Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A teratologic suppressor role for p53 in benzo(a)pyrene–treated transgenic p53-deficient mice

An Erratum to this article was published on 01 September 1995

Abstract

DNA damage may mediate birth defects caused by many drugs and environmental chemicals, therefore p53, a tumour suppressor gene that facilitates DNA repair, may be critically embryoprotective. We have studied the effects of the environmental teratogen, benzo[a]pyrene, on pregnant heterozygous p53–deficient mice. Such mice exhibited between 2– to 4–fold higher embryotoxicity and teratogenicity than normal p53–controls. Fetal resorptions reflecting in utero death were genotyped using the polymerase chain reaction and found to be increased 2.6–fold and 3.6–fold respectively with heterozygous and homozygous p53–deficient embryos. These results provide the first direct evidence that p53 may be an important teratological suppressor gene which protects the embryo from DNA–damaging chemicals and developmental oxidative stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manson, J.M. Developmental toxicity of alkylating agents: mechanism of action. In The Biochemical Basis of Chemical Teratogenesis. (ed Juchau, M.R.) 95–136 (Elsevier, New York, 1980).

    Google Scholar 

  2. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DMA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  Google Scholar 

  3. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  Google Scholar 

  4. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  Google Scholar 

  5. Merritt, A.J. et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54, 614–617 (1994).

    CAS  Google Scholar 

  6. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  Google Scholar 

  7. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  Google Scholar 

  8. Srivastava, S., Zou, Z.Q., Pirollo, K., Blattner, W. & Chang, E.H. Germ line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  Google Scholar 

  9. Donehower, L.A. et al. Mice deficient for p53 are developmental normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  10. Harvey, M. et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5, 225–229 (1993).

    Article  CAS  Google Scholar 

  11. Fritsche, M., Haessler, C. & Brandner, G. Induction of nuclear accumulation of the tumour-suppressor protein p53 by DMA-damaging agents. Oncogene 8, 307–318 (1993).

    CAS  PubMed  Google Scholar 

  12. Zhan, Q., Carrier, F. & Fornace, A.J., Induction of cellular p53 activity by DMA-damaging agents and growth arrest. Molec. cell. Biol. 13, 4242–4250 (1993).

    Article  CAS  Google Scholar 

  13. Schmid, P., Lorenz, A., Hameister, H. & Montenarh, M. Expression of p53 during mouse embryogenesis. Development 113, 857–865 (1991).

    CAS  Google Scholar 

  14. Louis, J.M., Mcfarland, V.W., May, P. & Mora, P.T. The phosphoprotein p53 is down-regulated post-transcriptionally during embryogenesis in vertebrates. Biochim. biophys. Acta 950, 395–402 (1988).

    Article  CAS  Google Scholar 

  15. Phillips, D.H. Fifty years of B[a]P. Nature 303, 468–472 (1983).

    Article  CAS  Google Scholar 

  16. Shum, S., Jensen, N.M. & Nebert, D.W. The murine Ah locus: in utero toxicity and teratogenesis associated with genetic differences in benzo[a]pyrene metabolism. Teratology 20, 365–376 (1979).

    Article  CAS  Google Scholar 

  17. Gelboin, H.V., tabolism, activation, and carcinogenesis: Role and regulation of mixed function oxidases and related enzymes. Physiol. Rev. 60, 1107–1166 (1980).

    Article  CAS  Google Scholar 

  18. Mamett, L.J., Reed, G.A. & Dennison, D.J. Prostaglandinsynthasedependent activation of 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene to mutagenic derivatives. Biochem. biophys. Res. Commun. 82, 210–216 (1978).

    Article  Google Scholar 

  19. Wrighton, S.A. & Stevens, J.C. The human hepatic cytochromes P-450 involved in drug metabolism. Crit. Rev. Toxicol. 22, 1–21 (1992).

    Article  CAS  Google Scholar 

  20. Okey, A.B., Riddick, D.S. & Harper, P.A. Molecular biology of the aromatic hydrocarbon (dioxin) receptor. Trends pharmacol. Sci. 15, 226–232 (1994).

    Article  CAS  Google Scholar 

  21. Shen, E.S., Guengerich, F.P. & Olson, J.R. Biphasic response for hepatic microsomal enzyme induction by 2,3,7,8-tetrachlorodibenzodioxin in C57BL/6J and DBA/2J mice. Biochem. Pharmcol. 38, 4075–4084 (1989).

    Article  CAS  Google Scholar 

  22. Van den berg, M., De Jongh, J., Poiger, H. & Olson, J.R. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and their relevance for toxicity. Crit. Rev. Toxicol. 24, 1–74 (1994).

    Article  CAS  Google Scholar 

  23. Birnbaum, L.S., Weber, H., Harris, M.W., Lamb, J.C. IV. & McKinney, J.D. Toxic interaction of specific polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin: increased incidence of cleft palates in mice. Toxicol. appl. Pharmacol. 77, 292–302 (1985).

    Article  CAS  Google Scholar 

  24. Burke, M.D. et al. Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem. Pharmacol. 34, 3337–3345 (1985).

    Article  CAS  Google Scholar 

  25. Jones, K.L. & Smith, D.W. The fetal alcohol syndrome. Teratology 12, 1–10 (1975).

    Article  CAS  Google Scholar 

  26. Hanson, J.W. & Smith, D.W. The fetal hydantoin syndrome. J. Pediatr. 87, 285–290 (1975).

    Article  CAS  Google Scholar 

  27. Finnell, R.H. & Chernoff, G.F. Variable patterns of malformation in the mouse fetal hydantoin syndrome. Am. J. med. Genet. 19, 463–471 (1984).

    Article  CAS  Google Scholar 

  28. Strickler, S.M. et al. Genetic predisposition to phenytoin induced birth defects. Lancet 2, 746–749 (1985).

    Article  CAS  Google Scholar 

  29. Scolnik, D. et al. Neurodevelopment of children exposed in utero to phenytoin and carbamazapine monotherapy. J. Am. med. Assoc. 271, 767–770 (1994).

    Article  CAS  Google Scholar 

  30. Sands, A., Donehower, L.A. & Bradley, A. Gene-targeting and the p53 tumour-suppressor gene. Mutat. Res. 307, 557–572 (1994).

    Article  CAS  Google Scholar 

  31. Jacks, T. et al. Tumor spectrum analysis in p53 mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  32. Purdie, C.A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9, 603–609 (1994).

    CAS  Google Scholar 

  33. Sah, V.P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, XXX–YYY (1995).

    Article  Google Scholar 

  34. Winn, L.M. & Wells, P.G. Phenytoin-initiated DMA oxidation in murine embryo culture, and embryoprotection by the antioxidative enzymes superoxide dismutase and catalase: Evidence for reactive oxygen species-mediated DMA oxidation in the molecular mechanism of phenytoin teratogenicity. Mol. Pharmacol. (in the press).

  35. Liu, L. & Wells, P.G. DMA oxidation as a potential molecular mechanism mediating drug-induced birth defects: Phenytoin and structurally related teratogens initiate the formation of 8-hydroxy-2′-deoxyguanosine in vitro and in vivo in murine maternal hepatic and embryonic tissues. Free Rad. Biol. Med. (in the press).

  36. Kastan, M.B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  37. Cleaver, J.E. It was a very good year for DMA repair. Cell 76, 1–4 (1994).

    Article  CAS  Google Scholar 

  38. McWhir, J., Selfridge, J., Harrison, D.J., Squires, S. & Melton, D.W. Mice with DMA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genet. 5, 217–223 (1993).

    Article  CAS  Google Scholar 

  39. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  Google Scholar 

  40. Manson, J.M. & Kang, Y.J. Test methods for assessing female reproductive and developmental toxicology. In Principles and Methods of Toxicology, (ed Hayes, A.W.), 3, 989–1037 (Raven Press, New York.1994).

    Google Scholar 

  41. Smart, Y.C., Fraser, I.S., Roberts, T.K., Clancy, R.L. & Cripps, A.W. Fertilization and early pregnancy loss in heathy women attempting conception. Clin. Reproduct. Fertil. 1, 177–184 (1982).

    CAS  Google Scholar 

  42. Rolfe, B.E. Detection of fetal wastage. Fertil. Steril. 37, 655–660 (1982).

    Article  CAS  Google Scholar 

  43. Roberts, C.J. & Lowe, C.R. Where have all the conceptions gone. Lancet 1, 498–499 (1975).

    Article  Google Scholar 

  44. Gupta, R.C. Nonrandom binding of the carcinogen N-hydroxy-2-acetyl aminofluorene to repetitive sequences of rat liver DNA in vivo. Proc. natl. Acad. Sci. U.S.A. 81, 6943–6947 (1984).

    Article  CAS  Google Scholar 

  45. Timme, T.L. & Thompson, C. Rapid allelotype analysis of p53 knockout mice. Benchmarks 17, 461–463 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicol, C., Harrison, M., Laposa, R. et al. A teratologic suppressor role for p53 in benzo(a)pyrene–treated transgenic p53-deficient mice. Nat Genet 10, 181–187 (1995). https://doi.org/10.1038/ng0695-181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing