Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic modifiers regulating DNA replication and double-strand break repair are associated with differences in mammary tumors in mouse models of Li-Fraumeni syndrome

Abstract

Breast cancer is the most common tumor among women with inherited variants in the TP53 tumor suppressor, but onset varies widely suggesting interactions with genetic or environmental factors. Rodent models haploinsufficent for Trp53 also develop a wide variety of malignancies associated with Li-Fraumeni syndrome, but BALB/c mice are uniquely susceptible to mammary tumors and is genetically linked to the Suprmam1 locus on chromosome 7. To define mechanisms that interact with deficiencies in p53 to alter susceptibility to mammary tumors, we fine mapped the Suprmam1 locus in females from an N2 backcross of BALB/cMed and C57BL/6J mice. A major modifier was localized within a 10 cM interval on chromosome 7. The effect of the locus on DNA damage responses was examined in the parental strains and mice that are congenic for C57BL/6J alleles on the BALB/cMed background (SM1-Trp53+/−). The mammary epithelium of C57BL/6J-Trp53+/− females exhibited little radiation-induced apoptosis compared to BALB/cMed-Trp53+/− and SM1-Trp53+/− females indicating that the Suprmam1B6/B6 alleles could not rescue repair of radiation-induced DNA double-strand breaks mostly relying on non-homologous end joining. In contrast, the Suprmam1B6/B6 alleles in SM1-Trp53+/− mice were sufficient to confer the C57BL/6J-Trp53+/− phenotypes in homology-directed repair and replication fork progression. The Suprmam1B6/B6 alleles in SM1-Trp53+/− mice appear to act in trans to regulate a panel of DNA repair and replication genes which lie outside the locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linkage analysis of mammary tumor incidence in BALB/cMed mice.
Fig. 2: Haplotype blocks differing between BALB/cMed and strains that do not develop mammary tumors.
Fig. 3: Generation and validation of BALB/cMed.B6-Suprmam1(N10)-Trp53tm1Tyj/+ (SM1-Trp53+/−) strain.
Fig. 4: Variation to radiation sensitivity between strains.
Fig. 5: Single-strand annealing and gene expression differences between C57BL/6-Trp53+/−, SM1-Trp53+/−, and BALB/c-Trp53+/− MEFs.
Fig. 6: Difference in replication fork processivity between C57BL/6-Trp53+/−, SM1-Trp53+/−, and BALB/c-Trp53+/− MEFs.

Similar content being viewed by others

Code availability

All computer code is available upon request.

References

  1. Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J, et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat. 2016;37:865–76.

    Article  CAS  PubMed  Google Scholar 

  2. Amadou A, Achatz MIW, Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol. 2018;30:23–9.

    Article  CAS  PubMed  Google Scholar 

  3. Fortuno C, James PA, Spurdle AB. Current review of TP53 pathogenic germline variants in breast cancer patients outside Li-Fraumeni syndrome. Hum Mutat. 2018;39:1764–73.

    Article  CAS  PubMed  Google Scholar 

  4. Wendt C, Margolin S. Identifying breast cancer susceptibility genes—a review of the genetic background in familial breast cancer. Acta Oncol. 2019;58:135–46.

    Article  CAS  PubMed  Google Scholar 

  5. Milne RL, Antoniou AC. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr Relat Cancer. 2016;23:T69–84.

    Article  CAS  PubMed  Google Scholar 

  6. Yan HX, Wu HP, Ashton C, Tong C, Ying QL. Rats deficient for p53 are susceptible to spontaneous and carcinogen-induced tumorigenesis. Carcinogenesis. 2012;33:2001–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Hansen SA, Hart ML, Busi S, Parker T, Goerndt A, Jones K, et al. Fischer-344 Tp53-knockout rats exhibit a high rate of bone and brain neoplasia with frequent metastasis. Dis Model Mech. 2016;9:1139–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4:1–7.

    Article  CAS  PubMed  Google Scholar 

  9. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119:861–72.

    Article  CAS  PubMed  Google Scholar 

  10. Donehower LA, Harvey M, Vogel H, McArthur MJ, Montgomery CA, Park SH, et al. Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinogenesis. 1995;14:16–22.

    Article  CAS  Google Scholar 

  11. Blackburn AC, Brown JS, Naber SP, Otis CN, Wood JT, Jerry JD. BALB/c alleles for Prkdc and Cdkn2a interact to modify tumor susceptibility in Trp53+/- mice. Cancer Res. 2003;63:2364–8.

    CAS  PubMed  Google Scholar 

  12. Koch JG, Gu X, Han Y, El-Naggar AK, Olson MV, Medina D, et al. Mammary tumor modifiers in BALB/cJ mice heterozygous for p53. Mamm Genome. 2007;18:300–9.

    Article  CAS  PubMed  Google Scholar 

  13. Yu Y, Okayasu R, Weil MM, Silver A, McCarthy M, Zabriskie R, et al. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene. Cancer Res. 2001;61:1820–4.

    CAS  PubMed  Google Scholar 

  14. Zhang SL, DuBois W, Ramsay ES, Bliskovski V, Morse HC 3rd, Taddesse-Heath L, et al. Efficiency alleles of the Pctr1 modifier locus for plasmacytoma susceptibility. Mol Cell Biol. 2001;21:310–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18:495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karanam K, Kafri R, Loewer A, Lahav G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell. 2012;47:320–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen JJ, Silver D, Cantor S, Livingston DM, Scully R. BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. Cancer Res. 1999;59:1752s–6s.

    CAS  PubMed  Google Scholar 

  18. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keimling M, Deniz M, Varga D, Stahl A, Schrezenmeier H, Kreienberg R, et al. The power of DNA double-strand break (DSB) repair testing to predict breast cancer susceptibility. FASEB J. 2012;26:2094–104.

    Article  CAS  PubMed  Google Scholar 

  20. Blackburn AC, Hill LZ, Roberts AL, Wang J, Aud D, Jung J, et al. Genetic mapping in mice identifies DMBT1 as a candidate modifier of mammary tumors and breast cancer risk. Am J Pathol. 2007;170:2030–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D, et al. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol. 2000;157:2151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Backlund MG, Trasti SL, Backlund DC, Cressman VL, Godfrey V, Koller BH. Impact of ionizing radiation and genetic background on mammary tumorigenesis in p53-deficient mice. Cancer Res. 2001;61:6577–82.

    CAS  PubMed  Google Scholar 

  23. Li B, Rosen JM, McMenamin-Balano J, Muller WJ, Perkins AS. neu/ERBB2 cooperates with p53-172H during mammary tumorigenesis in transgenic mice. Mol Cell Biol. 1997;17:3155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Halliwill KD, Adams CJ, Iyer V, Riva L, Mamunur R, et al. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nat Commun. 2020;11:394.

    Article  CAS  Google Scholar 

  25. Wang JR, de Villena FP, McMillan L. Comparative analysis and visualization of multiple collinear genomes. BMC Bioinforma. 2012;13:S13.

    Article  Google Scholar 

  26. Ramos EM, Hoffman D, Junkins HA, Maglott D, Phan L, Sherry ST, et al. Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur J Hum Genet. 2014;22:144–7.

    Article  CAS  PubMed  Google Scholar 

  27. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45:353–61.

  28. Fletcher O, Johnson N, Orr N, Hosking FJ, Gibson LJ, Walker K, et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J Natl Cancer Inst. 2011;103:425–35.

    Article  CAS  PubMed  Google Scholar 

  29. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39:870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bohringer M, Obermeier K, Griner N, Waldraff D, Dickinson E, Eirich K, et al. siRNA screening identifies differences in the Fanconi anemia pathway in BALB/c-Trp53+/- with susceptibility versus C57BL/6-Trp53+/- mice with resistance to mammary tumors. Oncogene. 2013;32:5458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weil MM, Xia X, Lin Y, Stephens LC, Amos CI. Identification of quantitative trait loci controlling levels of radiation-induced thymocyte apoptosis in mice. Genomics. 1997;45:626–8.

    Article  CAS  PubMed  Google Scholar 

  32. Weil MM, Xia C, Xia X, Gu X, Amos CI, Mason KA. A chromosome 15 quantitative trait locus controls levels of radiation-induced jejunal crypt cell apoptosis in mice. Genomics. 2001;72:73–7.

    Article  CAS  PubMed  Google Scholar 

  33. Mori N, Okumoto M, van Der Valk MA, Imai S, Haga S, Esaki K, et al. Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes and mapping of Rapop1, a novel susceptibility gene. Genomics. 1995;25:609–14.

    Article  CAS  PubMed  Google Scholar 

  34. Mori N, Okumoto M, Hart AA, Demant P. Apoptosis susceptibility genes on mouse chromosome 9 (Rapop2) and chromosome 3 (Rapop3). Genomics. 1995;30:553–7.

    Article  CAS  PubMed  Google Scholar 

  35. Snijders AM, Marchetti F, Bhatnagar S, Duru N, Han J, Hu Z, et al. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility. PLoS ONE. 2012;7:e45394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, et al. Integrated analysis of TP53 gene and pathway alterations in The Cancer Genome Atlas. Cell Rep. 2019;28:3010.

    Article  CAS  PubMed  Google Scholar 

  38. Dudgeon C, Chan C, Kang W, Sun Y, Emerson R, Robins H, et al. The evolution of thymic lymphomas in p53 knockout mice. Genes Dev. 2014;28:2613–20.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ullrich RL, Bowles ND, Satterfield LC, Davis CM. Strain-dependent susceptibility to radiation-induced mammary cancer is a result of differences in epithelial cell sensitivity to transformation. Radiat Res. 1996;146:353–5.

    Article  CAS  PubMed  Google Scholar 

  40. Okayasu R, Suetomi K, Yu Y, Silver A, Bedford JS, Cox R, et al. A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse. Cancer Res. 2000;60:4342–5.

    CAS  PubMed  Google Scholar 

  41. Bowman-Colin C, Xia B, Bunting S, Klijn C, Drost R, Bouwman P. et al. Palb2 synergizes with Trp53 to suppress mammary tumor formation in a model of inherited breast cancer. Proc Natl Acad Sci USA. 2013;110:8632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tchatchou S, Riedel A, Lyer S, Schmutzhard J, Strobel‐Freidekind O, Gronert‐Sum S, et al. Identification of a DMBT1 polymorphism associated with increased breast cancer risk and decreased promoter activity. Hum Mutat. 2010;31:60–6.

    Article  CAS  PubMed  Google Scholar 

  43. Sasaki H, Zlatescu MC, Betensky RA, Ino Y, Cairncross JG, Louis DN. PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol. 2001;159:359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deniz M, Romashova T, Kostezka S, Faul A, Gundelach T, Moreno-Villanueva M, et al. Increased single-strand annealing rather than non-homologous end-joining predicts hereditary ovarian carcinoma. Oncotarget. 2017;8:98660–76.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Majhi PD, Sharma A, Roberts AL, Daniele E, Majewski AR, Chuong LM, et al. Effects of benzophenone-3 and propylparaben on estrogen receptor-dependent R-loops and DNA damage in breast epithelial cells and mice. Environ Health Perspect. 2020;128:17002.

    Article  PubMed  Google Scholar 

  46. Jalan M, Olsen KS, Powell SN. Emerging roles of RAD52 in genome maintenance. Cancers. 2019;11:1038.

    Article  CAS  PubMed Central  Google Scholar 

  47. Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet. 2019;20:437–455.

    Article  CAS  PubMed  Google Scholar 

  48. Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19:889–90.

    Article  CAS  PubMed  Google Scholar 

  49. Ratnadiwakara M, Rooke M, Ohms SJ, French HJ, Williams RBH, Li RW, et al. The SuprMam1 breast cancer susceptibility locus disrupts the vitamin D/ calcium/ parathyroid hormone pathway and alters bone structure in congenic mice. J Steroid Biochem Mol Biol. 2018;188:48–58.

    Article  PubMed  CAS  Google Scholar 

  50. Didion JP, Yang H, Sheppard K, Fu CP, McMillan L, de Villena FP, et al. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics. 2012;13:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu J. Preparation, culture, and immortalization of mouse embryonic fibroblasts. In Curr Protoc Mol Biol. (eds Frederick, M. A. et al.) Chapter 28, Unit 28.1 (2005)..

  52. Becker KA, Lu S, Dickinson ES, Dunphy KA, Mathews L, Schneider SS, et al. Estrogen and progesterone regulate radiation-induced p53 activity in mammary epithelium through TGF-β-dependent pathways. Oncogene. 2005;24:6345–53.

    Article  CAS  PubMed  Google Scholar 

  53. Akyuz N, Boehden GS, Susse S, Rimek A, Preuss U, Scheidtmann KH, et al. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol. 2002;22:6306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kolishovski G, Lamoureux A, Hale P, Richardson JE, Recla JM, Adesanya O, et al. The JAX synteny browser for mouse-human comparative genomics. Mamm Genome. 2019;30:353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported, in part, by the National Institute of Environmental Health Sciences of the National Institutes of Health under award number R01CA105452 (DJJ), U01ES026140 (DJJ, SSS), the Department of Defense under contract #W81XWH-15-1-0217 (DJJ) and the Rays of Hope Center for Breast Cancer Research (DJJ), University Grants Commission (India) for Raman Fellowship for post-doctoral research (PDM) as well as by the German Research Foundation (DFG, Research Training Group 2554 to LW) and by the DFG-funded Graduate School of Molecular Medicine, Ulm University (PhD fellowship to KJM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisa Wiesmüller or D. Joseph Jerry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, P.D., Griner, N.B., Mayfield, J.A. et al. Genetic modifiers regulating DNA replication and double-strand break repair are associated with differences in mammary tumors in mouse models of Li-Fraumeni syndrome. Oncogene 40, 5026–5037 (2021). https://doi.org/10.1038/s41388-021-01892-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01892-5

This article is cited by

Search

Quick links