Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitotic recombination is suppressed by chromosomal divergence in hybrids of distantly related mouse strains

Abstract

Mitotic recombination occurs with high frequency in humans1,2 and mice3. It leads to loss of heterozygosity (LOH) at important gene loci and can cause disease4,5,6,7. However, the genetic modulators of mitotic recombination are not well understood. As recombination depends on a high level of nucleotide sequence homology8,9,10,11,12, we postulate that the frequency of somatic variants derived from mitotic recombination should be diminished in progeny from crosses between strains of mice in which nucleotide sequences have diverged. Here we report that mitotic recombination is suppressed, to various degrees in different tissues, in hybrids of distantly related mouse strains. Reintroduction of greater chromosomal homology by backcrossing restores mitotic recombination in offspring. Thus, chromosomal divergence inhibits mitotic recombination and, consequently, may act as a modifier of cancer susceptibility by limiting the rate of LOH. The suppression of mitotic recombination in some F1 hybrids in which meiotic recombination persists indicates that these processes are differentially affected by chromosomal divergence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strain-specific substitution of chromosome 8 by backcrossing.
Figure 2: Distribution of mitotic recombination breakpoints in IB, IIB and IIIB mice.

Similar content being viewed by others

References

  1. Gupta, P.K. et al. High frequency in vivo loss of heterozygosity is primarily a consequence of mitotic recombination in normal T lymphocytes of human APRT heterozygotes. Cancer Res. 57,1188–1193 (1997).

    CAS  PubMed  Google Scholar 

  2. Holt, D. et al. Interindividual variation in mitotic recombination. Am. J. Hum. Genet . 65, 1423–1427 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao, C. et al. Mitotic recombination produces the majority of the recessive fibroblast variants in heterozygous mice. Proc. Natl. Acad. Sci. USA 96, 9230–9235 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cavenee, W.K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305,779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Lasko, D., Cavenee, W. & Nordenskjold, M. Loss of constitutional heterozygosity in human cancer. Annu. Rev. Genet. 25, 281–314 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Qian, F. & Germino, G.G. “Mistakes happen”: Somatic mutation and disease. Am. J. Hum. Genet . 61, 1000–1005 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genet. 26, 424–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Shen, P. & Huang, H.V. Homologous recombination in Escherichia coli : dependence on substrate length and homology. Genetics 112, 441–457 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rayssiguier, C., Thaler, D.S. & Radman, M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342, 396–401 (1989)

    Article  CAS  PubMed  Google Scholar 

  10. Datta, A., Hendrix, M., Lipsitch, M. & Jinks-Robertson, S. Dual role for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc. Natl. Acad. Sci. USA 94, 9757–9762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Waldman, A.S. & Liskay, R.M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8, 5350–5357 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Shao, C. et al. Chromosome instability contributes to loss of heterozygosity in mice lacking p53. Proc. Natl. Acad. Sci. USA 97, 7405–7410 (2000).

    Article  Google Scholar 

  14. Van Sloun, P.P.H. et al. Determination of spontaneous loss of heterozygosity mutation in Aprt heterozygous mice. Nucleic Acids Res. 26, 4888–4894 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang, L., Deng, L., Shao, C., Stambrook, P.J. & Tischfield, J.A. In vivo loss of heterozygosity in T cells of B6C3F1 Aprt+/− mice. Environ. Mol. Mutagen. 35, 150–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Dietrich, W.F. et al. A genetic map of mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–225 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Lindblad-Toh, K. et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nature Genet . 24, 381–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. O'Neill, R.J.W., O'Neill, M.J. & Graves, J.A.M. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Copeland, N.G. et al. A genetic linkage map of the mouse: current applications and future prospects. Science 262, 57–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, W. & Jinks-Robertson, S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics 151, 1299–1313 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hagstrom, S.A. & Dryja, T.P. Mitotic recombination map of 13cen-13q14 derived from an investigation of loss of heterozygosity in retinoblastomas. Proc. Natl. Acad. Sci. USA 96, 2952–2957 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cichowski, K. et al. Mouse models of tumor development in neurofibromatosis type 1. Science 286, 2172–2176 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Vogel, K.S. et al. Mouse tumor model for neurofibromatosis type 1. Science 286, 2176–2179 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Engle, S.J. et al. Adenine phosphoribosyltransferase-deficient mice develop 2,8-dihydroxyadenine nephrolithiasis. Proc. Natl. Acad. Sci. USA 93, 5307–5312 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. McGuire for comments. This work was supported by grants from NIH (R01DK38185, P01ES05652).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changshun Shao or Jay A. Tischfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, C., Stambrook, P. & Tischfield, J. Mitotic recombination is suppressed by chromosomal divergence in hybrids of distantly related mouse strains. Nat Genet 28, 169–172 (2001). https://doi.org/10.1038/88897

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing