A radiation hybrid map of the rat genome containing 5,255 markers

Abstract

A whole-genome radiation hybrid (RH) panel was used to construct a high-resolution map of the rat genome based on microsatellite and gene markers. These include 3,019 new microsatellite markers described here for the first time and 1,714 microsatellite markers with known genetic locations, allowing comparison and integration of maps from different sources. A robust RH framework map containing 1,030 positions ordered with odds of at least 1,000:1 has been defined as a tool for mapping these markers, and for future RH mapping in the rat. More than 500 genes which have been mapped in mouse and/or human were localized with respect to the rat RH framework, allowing the construction of detailed rat-mouse and rat-human comparative maps and illustrating the power of the RH approach for comparative mapping.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: (facing page) RH and genetic maps of RNO1.
Figure 2: (preceding pages) Comparative map for rat homologous mouse and human genes.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Rapp, J.P., Wang, S.M. & Dene, H.A. A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 243, 542–544 (1989).

  2. 2

    Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353, 521–529 (1991).

  3. 3

    Jacob, H.J. et al. Genetic mapping of a major gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67 , 213–224 (1991).

  4. 4

    Bottger, A. et al. Quantitative trait loci influencing cholesterol and phosholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensive rat. J. Clin. Invest. 98, 856–862 (1996).

  5. 5

    Galli, J. et al. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nature Genet. 12, 31– 37 (1996).

  6. 6

    Gauguier, D. et al. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nature Genet. 12, 38–43 (1996).

  7. 7

    Brown, D.M., Provoost, A.P., Daly, M.J., Lander, E.S. & Jacob, H.J. Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nature Genet. 12, 44–51 (1996).

  8. 8

    Jacob, H.J. et al. Genetic dissection of autoimmune type I diabetes in the BB rat. Nature Genet. 2, 56– 60 (1992).

  9. 9

    Kermarrec, N. et al. Serum IgE concentration and other immune manifestations of treatment with gold salts are linked to the MHC and IL4 regions in the rat. Genomics 31, 111–114 (1996).

  10. 10

    Remmers, E.F. et al. A genome scan localizes five non-MHC loci controlling collagen-induced arthritis in rats. Nature Genet. 14, 82– 85 (1996).

  11. 11

    Moisan, M.-P. et al. A major quantitative trait locus influences hyperactivity in the rat. Nature Genet. 14, 471– 473 (1996).

  12. 12

    James, M.R. & Lindpaintner, K. Why map the rat? Trends Genet. 13, 171–173 (1997).

  13. 13

    Jacob, H.J. et al. A genetic linkage map of the laboratory rat, Rattus norvegicus . Nature Genet. 9, 63– 69 (1995).

  14. 14

    Bihoreau, M.-T. et al. A linkage map of the rat genome derived from three F2 crosses. Genome Res. 7, 434–440 (1997).

  15. 15

    Brown, D.M. et al. An integrated genetic linkage map of the laboratory rat. Mamm. Genome 9, 521–530 (1998).

  16. 16

    Cai, L. et al. Construction and characterization of a 10-genome equivalent yeast artificial chromosome library for the laboratory rat. Genomics 39, 385–392 ( 1997).

  17. 17

    Woon, P.Y. et al. Construction and characterization of a 10-fold genome equivalent rat P1-derived artificial chromosome library. Genomics 50, 306–316 (1998).

  18. 18

    Kanemoto, N. et al. Genetic dissection of "OLETF", a rat model for non-insulin-dependent diabetes mellitus. Mamm. Genome 9, 419– 425 (1998).

  19. 19

    Nadeau, J.H. & Taylor, B.A. Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl Acad. Sci. USA 81, 814–818 ( 1984).

  20. 20

    Nadeau, J.H. & Sankoff, D. The lengths of undiscovered conserved segments in comparative maps. Mamm. Genome 9, 491–495 (1998).

  21. 21

    Ohno, S. Sex Chromosomes and Sex Linked Genes (Springer-Verlag, Berlin/Heidelberg, 1967).

  22. 22

    Millwood, I.Y. et al. A gene-based genetic linkage and comparative map of the rat X chromosome. Genomics 40, 253– 261 (1997).

  23. 23

    Yamada, J., Kuramoto, T. & Serikawa, T. A rat genetic linkage map and comparative maps for mouse or human homologous rat genes. Mamm. Genome 5, 63–83 (1994).

  24. 24

    Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 ( 1996).

  25. 25

    Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

  26. 26

    Levan, G. et al. The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 10, 699–718 (1991).

  27. 27

    Kondo, Y. et al. DNA segments mapped by reciprocal use of microsatellite primers between mouse and rat. Mamm. Genome 4, 571 –576 (1993).

  28. 28

    Scalzi, J.M. & Hozier, J.C. Comparative genome mapping: mouse and rat homologies revealed by fluorescence in situ hybridization. Genomics 47, 44–51 (1998).

  29. 29

    Nabika, T. et al. Comparative mapping of novel simple sequence repeat markers in a hypertension-related region on rat chromosome 1. Mamm. Genome 8, 215–217 ( 1997).

  30. 30

    James, M.R. et al. A radiation hybrid map of 506 STS markers spanning human chromosome 11. Nature Genet. 8, 70– 76 (1994).

  31. 31

    Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

  32. 32

    Stewart, E.A. et al. An STS-based radiation hybrid map of the human genome. Genome Res. 7, 422–433 ( 1997).

  33. 33

    Gyapay, G. et al. A radiation hybrid map of the human genome. Hum. Mol. Genet. 5, 339–346 ( 1996).

  34. 34

    McCarthy, L.C. et al. A first-generation whole genome-radiation hybrid map spanning the mouse genome. Genome Res. 7, 1153– 1161 (1997).

  35. 35

    Yang, Y.P. & Womack, J.E. Parallel radiation hybrid mapping: a powerful tool for high-resolution genomic comparison. Genome Res. 8, 731–736 ( 1998).

  36. 36

    Catzellis, F.M., Dicerman, A.W., Michaux, J. & Kirsh, J.A.W. DNA hybridization and rodent phylogeny. in Mammal Phylogeny (eds Szalay, F.S., Novacek, M.J. & Mckiennu, M.C.) 159– 172 (Springer Verlag, New York, 1993).

  37. 37

    Collins, D.W. & Jukes, T.H. Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics 20, 386–396 ( 1994).

  38. 38

    Andersson, L. et al. Comparative genome organization: first international workshop. Mamm. Genome 7, 717–734 (1996).

  39. 39

    Carver, E.A. & Stubbs, L. Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res. 7, 1123–1137 (1997).

  40. 40

    Graves, J.A.M. Mammals that break the rules: genetics of marsupials and monotremes. Annu. Rev. Genet. 30, 233–260 (1996).

  41. 41

    Westerveld, A., Visser, R., Meerta Khan, P. & Bootsma, D. Loss of human genetic markers in man-Chinese hamster somatic cell hybrids. Nature New Biol. 234, 20– 24 (1971).

  42. 42

    Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K. & Mattick, J.S. Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008 (1991).

  43. 43

    Day, I.N.M., Humphries, S.E., Richards, S., Norton, D. & Reid, M. High-throughput genotyping using horizontal polyacrylamide gels with wells arranged for microplate array diagonal gel electrophoresis (MADGE). BioTechniques 19, 830–834 (1995).

  44. 44

    Matise, T.C., Perlin, M. & Chakravarti, A. Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nature Genet. 6, 384–390 ( 1994).

Download references

Acknowledgements

We thank the staff of Otsuka GEN Research Institute, especially Y. Kuga, A. Takaichi, F. Aki, Y. Fujii, N. Haraguchi, K. Higashi, S. Kato, K. Nakagawa, Y. Nakahara, A. Sano, T. Suto, K. Yamada and T. Wakamatsu for their technical assistance; T. Matise for help with MultiMap; P. Rodriguez-Tomé and P. Lijnzaad for help with RHdb submissions; and R.E. White for his generous help. Work in Oxford was supported by the Wellcome Trust. G.M.L. is a Wellcome Trust Principal Research Fellow. Work in both Oxford and Cambridge was partly supported by EC Biotechnology Grant BIO4-CT96-0372. Work in the laboratory of M.R.J. also used tools developed under EC grant BMH4-CT95-1565 and Wellcome Trust grant 045148/B/95.

Author information

Correspondence to Atsushi Tsuji or Akira Tanigami or Michael R. James.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watanabe, T., Bihoreau, M., McCarthy, L. et al. A radiation hybrid map of the rat genome containing 5,255 markers. Nat Genet 22, 27–36 (1999). https://doi.org/10.1038/8737

Download citation

Further reading