Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene

Abstract

Major advances in the identification of genes implicated in idiopathic epilepsy have been made. Generalized epilepsy with febrile seizures plus (GEFS+), benign familial neonatal convulsions and nocturnal frontal lobe epilepsy, three autosomal dominant idiopathic epilepsies, result from mutations affecting voltage-gated sodium and potassium channels, and nicotinic acetylcholine receptors, respectively1,2,3,4,5,6. Disruption of GABAergic neurotransmission mediated by γ-aminobutyric acid (GABA) has been implicated in epilepsy for many decades7. We now report a K289M mutation in the GABAA receptor γ2-subunit gene (GABRG2) that segregates in a family with a phenotype closely related to GEFS+ (ref. 8), an autosomal dominant disorder associating febrile seizures and generalized epilepsy previously linked to mutations in sodium channel genes1,2. The K289M mutation affects a highly conserved residue located in the extracellular loop between transmembrane segments M2 and M3. Analysis of the mutated and wild-type alleles in Xenopus laevis oocytes confirmed the predicted effect of the mutation, a decrease in the amplitude of GABA-activated currents. We thus provide the first genetic evidence that a GABAA receptor is directly involved in human idiopathic epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pedigree and mutation segregation in the family with GEFS+ (+, wild type; m, mutant).
Figure 2: Structure and evolutionary conservation of the lysine residue in GABRG2.
Figure 3: Effect of the γ2K289M mutation on GABA-evoked currents (IGABA) in X. laevis oocytes.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Wallace, R.H. et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nature Genet. 19, 366–370 (1998).

    Article  CAS  Google Scholar 

  2. Escayg, A. et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nature Genet. 24, 343–345 (2000).

    Article  CAS  Google Scholar 

  3. Singh, N.A. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nature Genet. 18, 25–29 (1998).

    Article  CAS  Google Scholar 

  4. Charlier, C. et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nature Genet . 18, 53–55 (1998).

    Article  CAS  Google Scholar 

  5. Steinlein, O.K. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genet. 11, 201–203 (1995).

    Article  CAS  Google Scholar 

  6. Fusco, M.D. et al. The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy. Nature Genet. 26, 275–276 (2000).

    Article  Google Scholar 

  7. Olsen, R.W., DeLorey, T.M., Gordey, M. & Kang, M.H. GABA receptor function and epilepsy. Adv. Neurol. 79, 499–510 (1999).

    CAS  PubMed  Google Scholar 

  8. Scheffer, I.E. & Berkovic, S.F. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 120, 479–490 (1997).

    Article  Google Scholar 

  9. Baulac, S. et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21–q33. Am. J. Hum. Genet. 65, 1078–1085 (1999).

    Article  CAS  Google Scholar 

  10. Moulard, B. et al. Identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+) on chromosome 2q24–q33. Am. J. Hum. Genet. 65, 1396–1400 (1999).

    Article  CAS  Google Scholar 

  11. Lopes-Cendes, I. et al. A new locus for generalized epilepsy with febrile seizures plus maps to chromosome 2. Am. J. Hum. Genet. 66, 698–701 (2000).

    Article  CAS  Google Scholar 

  12. Mehta, A.K. & Ticku, M.K. An update on GABAA receptors. Brain Res. Rev. 29, 196–217 (1999).

    Article  CAS  Google Scholar 

  13. Sieghart, W. et al. Structure and subunit composition of GABAA receptors. Neurochem. Int. 34, 379–385 (1999).

    Article  CAS  Google Scholar 

  14. Wilcox, A.S. et al. Human chromosomal localization of genes encoding the γ 1 and γ 2 subunits of the γ-aminobutyric acid receptor indicates that members of this gene family are often clustered in the genome. Proc. Natl. Acad. Sci. USA 89, 5857–5861 (1992).

    Article  CAS  Google Scholar 

  15. Kostrzewa, M. et al. Assignment of genes encoding GABAA receptor subunits α 1, α 6, β 2, and γ 2 to a YAC contig of 5q33. Eur. J. Hum. Genet. 4, 199–204 (1996).

    Article  CAS  Google Scholar 

  16. Sigel, E., Buhr, A. & Baur, R. Role of the conserved lysine residue in the middle of the predicted extracellular loop between M2 and M3 in the GABAA receptor. J. Neurochem. 73, 1758–1764 (1999).

    Article  CAS  Google Scholar 

  17. Boileau, A.J. & Czajkowski, C. Identification of transduction elements for benzodiazepines modulation of the GABAA receptor: three residues are required for allosteric coupling. J. Neurosci. 19, 10213–10220 (1999).

    Article  CAS  Google Scholar 

  18. Elmslie, F.V. et al. Analysis of GLRA1 in hereditary and sporadic hyperekplexia: a novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis. J. Med. Genet. 33, 435–436 (1996).

    Article  CAS  Google Scholar 

  19. Aridor, M. & Balch, W.E. Integration of endoplasmic reticulum signaling in health and disease. Nature Med. 5, 745–751 (1999).

    Article  CAS  Google Scholar 

  20. Ressot, C., Gomès, D., Dautigny, A., Pham-Dinh, D. & Bruzzone, R. Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct phenotypes: loss of function and altered gating properties. J. Neurosci. 18, 4063–4075 (1998).

    Article  CAS  Google Scholar 

  21. Krieg, P.A. & Melton, D.A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ruberg for critically reading the manuscript. This work was funded by the Association pour le Développement de la Recherche sur les Maladies Génétiques Neurologiques et Psychiatriques, the Association Française contre les Myopathies, the Association RETINA France, Généthon and the Association pour la Recherche sur la Génétique des Epilepsies sponsored by Sanofi-Synthelabo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric LeGuern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baulac, S., Huberfeld, G., Gourfinkel-An, I. et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat Genet 28, 46–48 (2001). https://doi.org/10.1038/ng0501-46

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0501-46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing