Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Moderate intergenerational and somatic instability of a 55-CTG repeat in transgenic mice

Abstract

Myotonic dystrophy (DM) is associated with the expansion of a (CTG)n trinucleotide repeat in the 3′ untranslated region (UTR) of the DM protein kinase gene (DMPK)1. The (CTG)n repeat is polymorphic and varies in size between 5 and 37 repeats in unaffected individuals1 whereas in affected patients there are between 50 and 4,000 CTGs2,3. The size of the (CTG)n.repeat, which increases through generations, generally correlates with clinical severity and age of onset4. The instability of the CTG repeat appears to depend on its size as well as on the sex of the transmitting parent5–9. Moreover, mitotic instability analysis of different human DM tissues shows length mosaicism between different cell lineages3,6,10–14. The molecular mechanisms of triplet instability remain elusive. To investigate the role of genomic sequences in instability, we produced transgenic mice containing a 45-kb genomic segment with a 55-CTG repeat cloned from a mildly affected patient. In contrast to other mouse models containing CAG repeats within cDNAs, these mice showed both intergenerational and somatic repeat instability15–17

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harris, H., Moncrieff, C. & Johnson, K. Myotonic Dystrophy: will the real gene please step forward!. Hum. Mol. Genet. 5, 1417–1423 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Lavedan, C., Hofmann-Radvanyi, H., Rabes, J. P., Roume, J. & Junien, C. Different sexdependent constraints in CTG length variation as explanation for congenital myotonic dystrophy. Lancet. 341, 237 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Thornton, C. A., Johnson, K. & Moxley, R.T.r. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann. Neurol.. 35, 104–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Harper, P.S., Harley, H.G., Reardon, W. & Shaw, D.J. Anticipation in myotonic dystrophy: new light on an old problem. Am. J. Hum. Genet. 51, 10–16 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brunner, H.G. et al. Influence of sex of the transmitting parent as well as of parental allele size on the CTG expansion in myotonic dystrophy (DM). Am. J. Hum. Genet. 53, 1016–1023 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lavedan, C. et al. Myotonic dystrophy: size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am. J. Hum. Genet. 52, 875–883 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ashizawa, T., Dunne, P.W., Ward, P.A., Seltzer, W.K. & Richards, C.S. Effects of the sex of myotonic dystrophy patients on the unstable triplet repeat in their affected offspring. Neurology 44, 120–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Harley, H.G. et al. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 52, 1164–1174 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jansen, G. et al. Gonosomal mosaicism in myotonic dystrophy patients: involvement of mitotic events in (CTG)n repeat variation and selection against extreme expansion in sperm. Am. J. Hum. Genet. 54, 575–585 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Anvret, M. et al. Larger expansions of the CTG repeat in muscle compared to lymphocytes from patients with myotonic dystrophy. Hum. Mol. Genet. 2, 1397–1400 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Ashizawa, T., Dubel, J.R. & Harati, Y. Somatic instability of CTG repeat in myotonic dystrophy. Neurology 43, 2674–2678 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Monckton, D.G., Wong, L.J.C., Ashizawa, T. & Caskey, C.T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 4, 1–8 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Wohrle, D. et al. Heterogeneity of DM kinase repeat expansion in different fetal tissues and further expansion during Cell proliferation in vitro: Evidence for a causal involvement of methyl-directed DNA mismatch repair in triplet repeat stability. Hum. Mol. Genet. 4, 1147–1153 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Wong, L.J.C., Ashizawa, T., Monckton, D.G., Caskey, C.T. & Richards, C.S. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am. J. Hum. Genet. 56, 114–122 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bingham, P.M. et al. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nature Genet. 9, 191–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Burright, E.N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Goldberg, Y.P. et al. Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript. Hum. Mol. Genet. 5, 177–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Jansen, G. et al. Characterization of the myotonic dystrophy region predicts multiple protein isoform-encoding mRNAs. Nature Genet. 1, 261–266 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Boucher, C.A. et al. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum. Mol. Genet. 4, 1919–1925 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Strand, M., Prolla, T.A., Liskay, R.M. & Petes, T.D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Imbert, G., Kretz, C., Johnson, K. & Mandel, J.L. Origin of the expansion mutation in myotonic dystrophy. Nature Genet. 4, 72–76 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Gibbs, M., Collick, A., Kelly, R.G. & Jeffreys, A.J. A tetranucleotide repeat mouse minisatellite displaying substantial somatic instability during early preimplantation development. Genomics 17, 121–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Barcelo, J.M., Mahadevan, M.S., Tsilfidis, C., MacKenzie, A.E. & Korneluk, R.G. Intergenerational stability of the myotonic dystrophy protomutation. Hum. Mol. Genet. 2, 705–709 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Mathieu, J. Genealogical reconstruction of myotonic dystrophy in the Saguenay-Lac-Saint-Jean area (Quebec, Canada). Neurology 40, 839–842 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Baker, S.M. et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82, 309–319 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Baker, S.M. et al. Involvement of mouse MIH1 in DNA mismatch repair and meiotic crossing over. Nature Genet. 13, 336–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. de Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Gourdon, G., Sharpe, J.A., Wells, D., Wood, W.G. & Higgs, D.R. Analysis of a 70 kb segment of DNA containing the human zeta and alpha- globin genes linked to their regulatory element (HS-40) in transgenic mice. Nucl. Acids Res. 22, 4139–4147 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Junien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourdon, G., Radvanyi, F., Lia, AS. et al. Moderate intergenerational and somatic instability of a 55-CTG repeat in transgenic mice. Nat Genet 15, 190–192 (1997). https://doi.org/10.1038/ng0297-190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0297-190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing