Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Promoter swapping between the genes for a novel zinc finger protein and β-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations

An Erratum to this article was published on 01 April 1997

Abstract

Pleiomorphic adenoma of the salivary glands is a benign epithelial tumour occurring primarily in the major and minor salivary glands1. It is by far the most common type of salivary gland tumour. Microscopically, pleiomorphic adenomas show a marked histological diversity with epithelial, myoepithelial and mesenchymal components in a variety of patterns. In addition to a cytogenetic subgroup with normal karyotypes, pleiomorphic adenomas are characterized by recurrent chromosome rearrangements, particularly reciprocal translocations, with breakpoints at 8q12, 3p21, and 12q13–15, in that order of frequency2,3. The most common abnormality is a reciprocal t(3;8)(p21;q12). We here demonstrate that the t(3;8)(p21;q12) results in promoter swapping between PLAG1, a novel, developmentally regulated zinc finger gene at 8q12, and the constitutively expressed gene for β-catenin (CTNNB1), a protein interface functioning in the WG/WNT signalling pathway and specification of cell fate during embryogenesis4. Fusions occur in the 5′-non-coding regions of both genes, exchanging regulatory control elements while preserving the coding sequences. Due to the t(3;8)(p21;q12), PLAG1 is activated and expression levels of CTNNB1 are reduced. Activation of PLAG1 was also observed in an adenoma with a variant translocation t(8;15)(q12;q14). Our results indicate that PLAG1 activation due to promoter swapping is a crucial event in salivary gland tumourigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Waldron, C.A. Mixed tumor (Pleomorphic adenoma) and myoepithlioma. in Surgical Pathology of the Salivary Glands, (eds Ellis, G.L, Auclair, P.L, & Gnopp, D.R.) 165–186 (Philadelphia, W.B. Saunders, 1991).

  2. Sandros, J., Stenman, G. & Mark, J. Cytogenetic and molecular observations in human and experimental salivary gland tumors. Cancer Genet Cytogenet. 44, 153–167 (1990).

    Article  CAS  Google Scholar 

  3. Bullerdiek, J. et al. Cytogenetic subtyping of 220 salivary gland pleomorphic adenomas: correlation to occurrence, histological subtype, and in vitro cellular behavior. Cancer Genet Cytogenet. 65, 27–31 (1993).

    Article  CAS  Google Scholar 

  4. Miller, J.R. & Moon, R.D. Signal transduction through (β-catenin and specification of cell fate during embryogenesis. Genes.Dev. 10, 2527–2539 (1996).

    Article  CAS  Google Scholar 

  5. Röijer, E. et al. Identification of a YAC spanning the chromosome 8q12 translocation breakpoint in pleomorphic adenomas with t(3;8)(p21;q12). Genes Chromosom.Cancer (in the press).

  6. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J.Mol.Biol. 17, 166–171 (1990).

    Google Scholar 

  7. Mitchell, P.J. & Tjian, R. Transcriptional regulation in mammalian cells by sequence-specific DMA binding proteins. Science 245, 371–378 (1989).

    Article  CAS  Google Scholar 

  8. Haber, D.A. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61, 1257–1269 (1990).

    Article  CAS  Google Scholar 

  9. Ladanyi, M. & Gerald, W. Fusion of the EWS and WT1 genes in the desmoplastic round cell tumor. Cancer Res. 54, 2837–2840 (1994).

    CAS  PubMed  Google Scholar 

  10. De The, H. et al. The PML-RAR fusion mRNA generated by the t(15; 17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  CAS  Google Scholar 

  11. Chen, Z. et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 12, 1161–1167 (1993).

    Article  CAS  Google Scholar 

  12. Kerckaert, J.-P. et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nature Genet. 5, 66–70 (1993).

    Article  CAS  Google Scholar 

  13. Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    Article  CAS  Google Scholar 

  14. Nollet, F., Berx, G., Molemans, F. & van Roy, F. Genomic organization of the human β-catenin gene (CTNNB1). Genomics 32, 413–424 (1996).

    Article  CAS  Google Scholar 

  15. Kraus, C. et al. Localization of the human β-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 23, 272–274 (1994).

    Article  CAS  Google Scholar 

  16. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  Google Scholar 

  17. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  18. Dallery, E. et al. TTF, a gene encoding a novel small G protein, fuses to the lymphoma-associated LAZ3 gene by the t(3;4) chromosomal translocation. Oncogene 10, 2171–2178 (1995).

    CAS  PubMed  Google Scholar 

  19. Galiegue-Zouitina, S. et al. The B cell transcriptional coactivator BOB1/OBF1 gene fuses to the LAZ3/BCL6 gene by t(3;11)(q27;q23.1) chromosomal translocation in a B cell leukemia line (Karpas231). Leukemia 10, 579–587 (1996).

    CAS  PubMed  Google Scholar 

  20. Aplan, P.D. et al. Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic Leukemia. Blood 79, 1327–1333 (1992).

    CAS  PubMed  Google Scholar 

  21. Schoenmakers, E.F.P.M. et al. Physical mapping of chromosome 12q breakpoints in lipoma, pleomorphic salivary gland adenoma, uterine leiomyoma, and myxoid liposarcoma. Genomics 20, 210–222 (1994).

    Article  CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989).

    Google Scholar 

  23. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal.Biochem. 132, 6–13 (1984).

    Article  Google Scholar 

  24. Albertsen, H.M. et al. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc.Nati.Acad.Sci.USA 87, 4256–4260 (1990).

    Article  CAS  Google Scholar 

  25. Green, E.D. & Olson, M.V. Systematic screening of yeast artificial-chromosome libraries using the polymerase chain reaction. Proc.Natl.Acad.Sci.USA 87, 1213–1217 (1990).

    Article  CAS  Google Scholar 

  26. Schoenmakers, E.F.P.M. et al. Recurrent rearrangements in the high mobility group protein gene, HMGIC, in benign mesenchymal tumours. Nature Genet. 10, 436–444 (1995).

    Article  CAS  Google Scholar 

  27. Wood, S., Schertzer, M., Drabkin, H., Patterson, D. & Deaven, L.L. Characterization of a human chromosome 8 cosmid library constructed from flow-sorted chromosomes. Cytogenet.Cell.Genet. 59, 243–247 (1992).

    Article  CAS  Google Scholar 

  28. Sachs, A.B. Messenger RNA degradation in eukaryotes. Cell 74, 413–421 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kas, K., Voz, M., Röijer, E. et al. Promoter swapping between the genes for a novel zinc finger protein and β-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet 15, 170–174 (1997). https://doi.org/10.1038/ng0297-170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0297-170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing