Article | Published:

The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP96 and class I homeoprotein HOXA9

Abstract

The t(7;11)(p15;p15) translocation is a recurrent chromosomal abnormality associated primarily with acute myeloid leukaemia (FAB M2 and M4). We present here the molecular definition of this translocation. On chromosome 7 positional cloning revealed the consistent rearrangement of the HOXA9 gene, which encodes a class I homeodomain protein potentially involved in myeloid differentiation. On chromosome 11 the translocation targets the human homologue of NUPP98, a member of the GLFG nucleoporin family. Chimaeric messages spliced over the breakpoint fuse the GLFG repeat domains of NUP98 in-frame to the HOXA9 homeobox. The predicted NUP98–HOXA9 fusion protein may promote leukaemogenesis through inhibition of HOXA9-mediated terminal differentiation and/or aberrant nucleocytoplasmic transport.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Rabbitts, T.H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

  2. 2

    Tomiyasu, T., Sasaki, M., Kondo, K. & Okada, M. Chromosome banding studies in 106 cases of chronic myelogenous leukemia. Jap. J. Human Genet 27, 243–258 (1982).

  3. 3

    Sato, Y. et al. Reciprocal translocation involving the short arms of chromosomes 7 and 11, t(7p−; 11 p+), associated with myeloid leukemia with maturation. Blood 70, 1654–1658 (1987).

  4. 4

    Kwong, Y.L., Liu, H.W. & Chan, L.C. Racial predisposition to translocation (7; 11) [letter]. Leukemia 6, 232 (1992).

  5. 5

    Kwong, Y.L. & Chan, T.K. Translocation (7; 11)(p15; p15) in acute myeloid leukemia M2: association with trilineage myelodysplasia and giant dysplastic myeloid cells [letter]. Am. J. Hematol. 47, 62–64 (1994).

  6. 6

    Morris, C.M. et al. HRAS1 and INS genes are relocated but not structurally altered as a result of the t(7; 11)(p15; p15) in a clone from a patient with acute myeloid leukaemia (M4). Br. J. Haematol. 71, 481–486 (1989).

  7. 7

    Winqvist, R. et al. Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. Cancer Res. 53, 4486–4488 (1993).

  8. 8

    Bepler, G. & Garcia-Blanco, M.A. Three tumor-suppressor regions on chromosome 11p identified by high-resolution deletion mapping in human non-small-cell lung cancer. Proc. Natl. Acad. Sci. USA 91, 5513–7 (1994).

  9. 9

    Kamps, M.R., Murre, C., Sun, X.H. & Baltimore, D. A new homeobox gene contributes the DMA binding domain of the t(1 ;19) translocation protein in pre-B ALL. Cell 60, 547–555 (1990).

  10. 10

    Nourse, J. et al. Chromosomal translocation t(1 ;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60, 535–545 (1990).

  11. 11

    Dubé, I.D. et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10; 14). Blood 78, 2996–3003 (1991).

  12. 12

    Hatano, M., Roberts, C.W., Minden, M., Grist, W.M. & Korsmeyer, S.J. Deregulation of a homeobox gene, HOX11, by the t(10; 14) in T cell leukemia. Science 263, 79–82 (1991).

  13. 13

    Kennedy, M.A. et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc. Natl. Acad. Sci. USA 88, 8900–8904 (1991).

  14. 14

    Galili, N. et al. Fusion of the fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nature Genet. 5, 230–235 (1993).

  15. 15

    Davis, L.I. The nuclear pore complex. Annu. Rev. Biochem. 64, 865–896 (1995).

  16. 16

    von Lindern, M., Poustka, A., Lerach, H. & Grosveld, G. The (6;9) chromosome translocation, associated with a specific subtype of acute nonlymphocytic leukemia, leads to aberrant transcription of a target gene on 9q34. Mol. Cell. Biol. 10, 4016–26 (1990).

  17. 17

    von Lindern, M. et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukaemia, results in the fusion of two genes, dek and can, and the expression of a chimaeric, leukaemia-specific dek-can mRNA. Mol. Cell. Biol. 12, 1687–1697 (1992).

  18. 18

    Kraemer, D., Wozniak, R.W., Blobel, G. & Radu, A. The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc. Natl. Acad. Sci. USA 91, 1519–1523 (1994).

  19. 19

    Radu, A., Moore, M.S. & Blobel, G. The peptide repeat domain of nucleoporin NUP98 functions as a docking site in transport across the nuclear pore complex. Cell 81, 215–222 (1995).

  20. 20

    Powers, M.A., Macaulay, C., Masiarz, F.R. & Forces, D.J. Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J. Cell Biol. 128, 721–736 (1995).

  21. 21

    Glaser, T., Rose, E., Morse, H., Housman, D. & Jones, C. A panel of irradiation-reduced hybrids selectively retaining human chromosome 11p13: their structure and use to purify the WAGR gene complex. Genomics 6, 48–64 (1990).

  22. 22

    Bill, J., Palmer, O.K., Miller, Y.E., Geyer, D. & Jones, C. Expression of human chromosome 11-encoded cell-surface antigens by DNA-mediated transfectants. Somat. Cell Mol. Genet. 12, 409–413 (1986).

  23. 23

    Gyapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

  24. 24

    Liu, J. et al. Large-scale cloning of human chromosome 2-specific yeast artifical chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach. Genomics 26, 178–191 (1995).

  25. 25

    Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

  26. 26

    Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

  27. 27

    Lowney, P. et al. A human Hox 1 homeobox gene exhibits myeloid-specific expression of alternative transcripts in human hematopoietic cells. Nucl. Acids Res. 19, 3443–3449 (1991).

  28. 28

    Acampora, D. et al. The human HOX gene family. Nucl. Acids Res. 17, 10385–10402 (1989).

  29. 29

    Glaser, T., Housman, D., Lewis, W.H., Gerhard, D. & Jones, C. A fine-structure deletion map of human chromosome 11 p: analysis of J1 series hybrids.Somaf. Cell Mol. Genes. 15, 477–501 (1989).

  30. 30

    Rubin, M.R. et al. Murine Hox-1.7 homeo-box gene: cloning,chromosomal location and expression. Mol. Cell. Biol. 7, 3836–3841 (1987).

  31. 31

    Rubin, M.R. & Nguyen-Huu, M.C. Alternatively spliced Hox-1. 7 transcripts encode different protein products. DNA Seq. 1, 115–124 (1990).

  32. 32

    Heisterkamp, N. et al. Acute leukaemia in bcr/abl transgenic mice. Nature 344, 251–253 (1990).

  33. 33

    Zavortink, M. & Sakonju, S. The morphogenetic and regulatory functions of the Drosophila Abdominal-B gene are encoded in overlapping RNAs transcribed from separate promoters. Genes Dev. 3, 1969–1981 (1989).

  34. 34

    Fabre, E., Boelens, W.C., Wimmer, C., Mattaj, I.W. & Hurt, E.G. Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell 78, 275–289 (1994).

  35. 35

    Kongsuwan, K., Webb, E., Housiaux, P. & Adams, J.M. Expression of multiple homeobox genes within diverse mammalian haemopoietic lineages. EMBO J. 7, 2131–2138 (1988).

  36. 36

    Shen, W.-F. et al. Lineage-restricted expression of homeobox-containing genes in hematopoietic cell lines. Proc. Natl. Acad. Sci. USA 86, 8536–8540 (1989).

  37. 37

    Magli, M.C. et al. Coordinate regulation of HOX genes in human hematopoietic cells.Proc. Natl. Acad. Sci. USA 88, 6348–52 (1991).

  38. 38

    Vieille-Grosjean, I., Roullot, V. & Courtois, G. Lineage and stage specific expression of HOX 1 genes in the human hematopoietic system. Biochem. Biophys. Res. Commun. 183, 1124–1130 (1992).

  39. 39

    Sauvageau, G. et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. USA 91, 12223–12227 (1994).

  40. 40

    Langston, A.W. & Gudas, L.J. Identification of a retinoic acid responsive enhancer 3′ of the murine homeobox gene Hox-1.6. Mech. Dev. 38, 217–27 (1992).

  41. 41

    Gardiner, D.M., Blumberg, B., Komine, Y. & Bryant, S.V. Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121, 1731–1741 (1995).

  42. 42

    Collins, S.J., Robertson, K.A. & Mueller, L. Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha). Mol. Cell. Biol. 10, 2154–2163 (1990).

  43. 43

    Borrow, J., Goddard, A.D., Sheer, D. & Solomon, E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science. 249, 1577–1580 (1990).

  44. 44

    de Thé, H., Chomienne, C., Lanotte, M., Degos, L. & Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347, 558–561 (1990).

  45. 45

    Yu, B.D., Hess, J.L., Horning, S.E., Brown, G.A.J. & Korsmeyer, S.J., Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).

  46. 46

    Benson, G.V., Nguyen, T.H. & Maas, R.L. The expression pattern of the murine Hoxa-10 gene and the sequence recognition of its homeodomain reveal specific properties of Abdominal B-like genes. Mol. Cell. Biol. 15, 1591–1601 (1995).

  47. 47

    Kongsuwan, K., Alien, J. & Adams, J.M. Expression of Hox-2. 4 homeobox gene directed by proviral insertion in a myeloid leukemia. Nucl. Acids Res. 17, 1881–1892 (1989).

  48. 48

    Chan, S.-K., Jaffe, L., Capovilla, M., Botas, J. & Mann, R.S. The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with Extradenticle, another homeoprotein. Cell 78, 603–615 (1994).

  49. 49

    van Dijk, M.A. & Murre, C. extradenticle raises the DNA binding specificity of homeotic selector gene products. Cell 78, 617–624 (1994).

  50. 50

    Chang, C.-R. et al. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev. 9, 663–674 (1995).

  51. 51

    von Lindern, M. et al. can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: characterization of the sef gene. Mol. Cell. Biol. 12, 3346–3355 (1992).

  52. 52

    Moroianu, J., Hijikata, M., Blobel, G. & Radu, A. Mammalian karyopherin α1β and α2β heterodimers: α1 or α2 subunit binds nuclear localization signal and β subunit interacts with peptide repeat-containing nucleoporins. Proc. Natl. Acad. Sci. USA 92, 6532–6536 (1995).

  53. 53

    Fornerod, M. et al. Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene 10, 1793–1748 (1995).

  54. 54

    Blobel, G. Gene gating: a hypothesis. Proc. Natl. Acad. Sci. USA 82, 8527–6529 (1985).

  55. 55

    Sukegawa, J. & Blobel, G. A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72, 29–38 (1993).

  56. 56

    Fujimura, T. et al. Two additional cases of acute myeloid leukemia with t(7; 11)(p15; p15) having low neutrophil alkaline phosphatase scores. Cancer Genef. Cytogenes. 68, 143–146 (1993).

  57. 57

    Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

  58. 58

    Chirgwin, J.M., Pryzbyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

  59. 59

    Holton, T.A. & Graham, M.W. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucl. Acids Res. 19, 1156 (1991).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading