Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Novel dominant mutations in Saccharomyces cerevisiae MSH6

Abstract

Inherited mutations in the mismatch repair (MMR) genes MSH2 and MLH1 are found in most hereditary nonpolyposis colon cancer (HNPCC) patients studied1. Eukaryotic MMR uses two partially redundant mispair-recognition complexes, Msh2p–Msh6p and Msh2p–Msh3p (ref.2) Inactivation of MSH2 causes high rates of accumulation of both base-substitution and frameshift mutations. Mutations in MSH6 or MSH3 cause partial defects in MMR, with inactivation of MSH6 resulting in high rates of base-substitution mutations and low rates of frameshift mutations; inactivation of MSH3 results in low rates of frameshift mutations. These different mutator phenotypes provide an explanation for the observation that MSH2 mutations are common in HNPCC families, whereas mutations in MSH3 and MSH6 are rare1,3,5. We have identified novel missense mutations in Saccharomyces cerevisiae MSH6 that appear to inactivate both Msh2p–Msh6p- and Msh2p–Msh3p-dependent MMR. Our work suggests that such mutations may underlie some cases of inherited cancer susceptibility similar to those caused by MSH2 mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the Msh6 protein showing the location of known motifs.
Figure 2: Gel shifts with cell extracts overexpressing Msh2p and Msh6p and GT heteroduplex.
Figure 3: Models for the interactions between MMR proteins and mispaired bases in wild-type S. cerevisiae strains and strains containing different msh6 mutations.

Similar content being viewed by others

References

  1. Peltomaki, P. & Vasen, H. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113, 1146–1158 (1997).

    Article  CAS  Google Scholar 

  2. Kolodner, R. & Marsischky, G. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    Article  CAS  Google Scholar 

  3. Liu, B., et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nature Med. 2, 169–174 (1996).

    Article  CAS  Google Scholar 

  4. Wijnen, J., et al. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nature Genet. 23, 142–144 (1999).

    Article  CAS  Google Scholar 

  5. Kolodner, R., et al. Germline mutations in MSH6 in colorectal cancer families. Cancer Res. 59, 5068–5074 (1999).

    CAS  PubMed  Google Scholar 

  6. Jeyaprakash, A., Welch, J. & Fogel, S. Mutagenesis of yeast MW104-1B strain has identified the uncharacterized PMS6 DNA mismatch repair gene locus and additional alleles of existing PMS1, PMS2 and MSH2 genes. Mutat. Res. 325, 21–29 (1994).

    Article  CAS  Google Scholar 

  7. Williamson, M., Game, J. & Fogel, S. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics 110, 609–646 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeyaprakash, A., Das Gupta, R. & Kolodner, R., Saccharomyces cerevisiae pms2 mutations are alleles of MLH1 and pms2-2 corresponds to an HNPCC causing missense mutation. Mol. Cell. Biol. 16, 3008–3011 (1996).

    Article  CAS  Google Scholar 

  9. Marsischky, G., Filosi, N., Kane, M. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407–420 (1996).

    Article  CAS  Google Scholar 

  10. Flores-Rozas, H. & Kolodner, R. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl Acad. Sci. USA 95, 12404–12409 (1998).

    Article  CAS  Google Scholar 

  11. Greene, C.N. & Jinks-Robertson, S. Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Mol. Cell. Biol. 17, 2844–2850 (1997).

    Article  CAS  Google Scholar 

  12. Bowers, J., Sokolsky, T., Quach, T. & Alani, E. Amutation in the MSH6 subunit of the Saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition. J. Biol. Chem. 274, 16115–16125 (1999).

    Article  CAS  Google Scholar 

  13. Studamire, B., Quach, T. & Alani, E., Saccharomyces cerevisiae Msh2p and Msh6p ATPase activities are both required during mismatch repair. Mol. Cell. Biol. 18, 7590–7601 (1998).

    Article  CAS  Google Scholar 

  14. Guerrette, S., Wilson, T., Gradia, S. & Fishel, R. Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6: Examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol. Cell. Biol. 18, 6616–6623 (1998).

    Article  CAS  Google Scholar 

  15. Iaccarino, I., Marra, G., Palombo, F. & Jiricny, J. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSα. EMBO J. 17, 2677–2686 (1998).

    Article  CAS  Google Scholar 

  16. Marsischky, G. & Kolodner, R. Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. J. Biol. Chem. 274, 26668–26682 (1999).

    Article  CAS  Google Scholar 

  17. Gradia, S., et al. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3, 255–261 (1999).

    Article  CAS  Google Scholar 

  18. Blackwell, L., Martik, D., Bjornson, K., Bjornson, E. & Modrich, P. Nucleotide-promoted release of hMutSα from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J. Biol. Chem. 273, 32055–32062 (1998).

    Article  CAS  Google Scholar 

  19. Edelmann, W., et al. Mutation in the mismatch repair gene Msh6causes cancer susceptibility. Cell 91, 467–477 (1997).

    Article  CAS  Google Scholar 

  20. Akiyama, Y., et al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 57, 3920–3923 (1997).

    CAS  Google Scholar 

  21. Miyaka, M., et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nature Genet. 17, 271–272 (1997).

    Article  Google Scholar 

  22. Wu, Y., et al. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am. J. Hum. Genet. 65, 1291–1298 (1999).

    Article  CAS  Google Scholar 

  23. Verma, L., et al. Mononuclotide microsatellite instability and germline msh6 mutation analysis in early onset colorectal cancer. J. Med. Genet. 36, 678–682 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rose, M., Winston, F. & Hieter, P. Methods in Yeast Genetics: A Laboratory Course (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1990).

  25. Umezu, K., Sugawara, N., Chen, C., Haber, J. & Kolodner, R. Genetic analysis of Saccharomyces cerevisiae RPA1 reveals multiple functions in DNA metabolism. Genetics 148, 989–1005 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ho, S., Hunt, H., Horton, R., Pullen, J. & Pease, L. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  27. Clark, A. et al. Functional analysis of human MutSα and MutSβ complexes in yeast. Nucleic Acids Res. 27, 736–742 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ludwig Institute for Cancer Reseach Core Sequencing Facility (J. Weger and J. Sansone) for all the sequencing done for this project; P. Hunt for assistance with fluctutation analysis of the site-directed mutants; E. Alani for Msh6p polyclonal antibody; and members of the Kolodner laboratory for comments on the manuscript. This work was supported by NIH grant GM50006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Kolodner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das Gupta, R., Kolodner, R. Novel dominant mutations in Saccharomyces cerevisiae MSH6. Nat Genet 24, 53–56 (2000). https://doi.org/10.1038/71684

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing