Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of DOK genes as lung tumor suppressors

Abstract

Genome-wide analyses of human lung adenocarcinoma have identified regions of consistent copy-number gain or loss, but in many cases the oncogenes and tumor suppressors presumed to reside in these loci remain to be determined. Here we identify the downstream of tyrosine kinase (Dok) family members Dok1, Dok2 and Dok3 as lung tumor suppressors. Single, double or triple compound loss of these genes in mice results in lung cancer, with penetrance and latency dependent on the number of lost Dok alleles. Cancer development is preceded by an aberrant expansion and signaling profile of alveolar type II cells and bronchioalveolar stem cells. In human lung adenocarcinoma, we identify DOK2 as a target of copy-number loss and mRNA downregulation and find that DOK2 suppresses lung cancer cell proliferation in vitro and in vivo. Given the genomic localization of DOK2, we propose it as an 8p21.3 haploinsufficient human lung tumor suppressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dok1, Dok2 and Dok3 single- and compound-knockout mice develop lung cancer.
Figure 2: Histopathology of lung tumors in Dok knockout mice.
Figure 3: Hyperplasia and tumors in Dok knockout mice consist of AT2 cells and BASCs.
Figure 4: Lung tumorigenesis in Dok TKO mice is preceded by an expansion of AT2 cells and BASCs.
Figure 5: Loss of DOK2 expression in human lung adenocarcinomas and functional data implicate DOK2 as a human lung tumor suppressor.
Figure 6: DOK2 suppresses lung cancer cell proliferation in vitro and in vivo.
Figure 7: Lung tumorigenesis in Dok2+/− mice.

Similar content being viewed by others

References

  1. Carpino, N. et al. p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 88, 197–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Yamanashi, Y. & Baltimore, D. Identification of the Abl- and rasGAP-associated 62 kDa protein as a docking protein, Dok. Cell 88, 205–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Di Cristofano, A. et al. Molecular cloning and characterization of p56dok-2 defines a new family of RasGAP-binding proteins. J. Biol. Chem. 273, 4827–4830 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Cong, F., Yuan, B. & Goff, S.P. Characterization of a novel member of the DOK family that binds and modulates Abl signaling. Mol. Cell. Biol. 19, 8314–8325 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grimm, J. et al. Novel p62dok family members, dok-4 and dok-5, are substrates of the c-Ret receptor tyrosine kinase and mediate neuronal differentiation. J. Cell Biol. 154, 345–354 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crowder, R.J., Enomoto, H., Yang, M., Johnson, E.M. Jr. & Milbrandt, J. Dok-6, a Novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J. Biol. Chem. 279, 42072–42081 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Okada, K. et al. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312, 1802–1805 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Yamanashi, Y. et al. Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev. 14, 11–16 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Cristofano, A. et al. p62(dok), a negative regulator of Ras and mitogen-activated protein kinase (MAPK) activity, opposes leukemogenesis by p210(bcr-abl). J. Exp. Med. 194, 275–284 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones, N. & Dumont, D.J. Recruitment of Dok-R to the EGF receptor through its PTB domain is required for attenuation of Erk MAP kinase activation. Curr. Biol. 9, 1057–1060 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Suzu, S. et al. p56(dok-2) as a cytokine-inducible inhibitor of cell proliferation and signal transduction. EMBO J. 19, 5114–5122 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao, M., Janas, J.A., Niki, M., Pandolfi, P.P. & Van Aelst, L. Dok-1 independently attenuates Ras/mitogen-activated protein kinase and Src/c-myc pathways to inhibit platelet-derived growth factor-induced mitogenesis. Mol. Cell. Biol. 26, 2479–2489 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yasuda, T. et al. Role of Dok-1 and Dok-2 in myeloid homeostasis and suppression of leukemia. J. Exp. Med. 200, 1681–1687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niki, M. et al. Role of Dok-1 and Dok-2 in leukemia suppression. J. Exp. Med. 200, 1689–1695 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lau, S.K., Luthringer, D.J. & Eisen, R.N. Thyroid transcription factor-1: a review. Appl. Immunohistochem. Mol. Morphol. 10, 97–102 (2002).

    CAS  PubMed  Google Scholar 

  16. Al-Hajj, M. & Clarke, M.F. Self-renewal and solid tumor stem cells. Oncogene 23, 7274–7282 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Dick, J.E. & Lapidot, T. Biology of normal and acute myeloid leukemia stem cells. Int. J. Hematol. 82, 389–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, C.F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Chitale, D. et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 28, 2773–2783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weir, B.A. et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wistuba, I.I. et al. Allelic losses at chromosome 8p21–23 are early and frequent events in the pathogenesis of lung cancer. Cancer Res. 59, 1973–1979 (1999).

    CAS  PubMed  Google Scholar 

  22. Ohata, H. et al. Deletion mapping of the short arm of chromosome 8 in non-small cell lung carcinoma. Genes Chromosom. Cancer 7, 85–88 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Rhodes, D.R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Su, L.J. et al. Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics 8, 140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stearman, R.S. et al. Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am. J. Pathol. 167, 1763–1775 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jackson, E.L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pei, X.H., Bai, F., Smith, M.D. & Xiong, Y. p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers. Cancer Res. 67, 3162–3170 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Yanagi, S. et al. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J. Clin. Invest. 117, 2929–2940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ventura, J.J. et al. p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat. Genet. 39, 750–758 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Yasuda, T. et al. Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int. Immunol. 19, 487–495 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Shinohara, H. et al. Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J. Exp. Med. 201, 333–339 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ng, C.H., Xu, S. & Lam, K.P. Dok-3 plays a nonredundant role in negative regulation of B-cell activation. Blood 110, 259–266 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Inoue, A., Yasuda, T., Yamamoto, T. & Yamanashi, Y. Dok-1 is a positive regulator of IL-4 signalling and IgE response. J. Biochem. 142, 257–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kashiwada, M. et al. Downstream of tyrosine kinases-1 and Src homology 2-containing inositol 5′-phosphatase are required for regulation of CD4+CD25+ T cell development. J. Immunol. 176, 3958–3965 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Tonon, G. et al. High-resolution genomic profiles of human lung cancer. Proc. Natl. Acad. Sci. USA 102, 9625–9630 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujiwara, Y. et al. Evidence for the presence of two tumor suppressor genes on chromosome 8p for colorectal carcinoma. Cancer Res. 53, 1172–1174 (1993).

    CAS  PubMed  Google Scholar 

  37. Emi, M. et al. Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res. 52, 5368–5372 (1992).

    CAS  PubMed  Google Scholar 

  38. Macoska, J.A. et al. Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res. 55, 5390–5395 (1995).

    CAS  PubMed  Google Scholar 

  39. Scholnick, S.B. et al. Chromosome 8 allelic loss and the outcome of patients with squamous cell carcinoma of the supraglottic larynx. J. Natl. Cancer Inst. 88, 1676–1682 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Dobbin, K.K. et al. Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. Clin. Cancer Res. 11, 565–572 (2005).

    CAS  PubMed  Google Scholar 

  41. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P.P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Politi, H.E. Varmus, L.F. Cai, C.F. Kim, T. Motoi, R. Hobbs, J. Clohessy, T. Yung, A. Carracedo, K. Ito, Pandolfi lab members, members of the Memorial Sloan-Kettering Cancer Center (MSKCC) Lung Cancer Oncogenome Group and members of the Dana-Farber/Harvard Cancer Center Lung Cancer Research Program for advice and discussion; B. Clarkson (MSKCC) for reagents and discussion; M. Asher, T. Matos and A. Egia for histology services and immunohistochemistry; and the MSKCC, University of Iowa, and Dana-Farber Cancer Institute flow cytometry core facilities for technical assistance. This work was funded by National Cancer Institute grants and CA-129243 (to M.L.) CA-64593 (to P.P.P.) and by the Steps for Breath Fund from the Society of MSKCC and the Thomas G. Labrecque Foundation (to M.N.).

Author information

Authors and Affiliations

Authors

Contributions

A.H.B., M.N., A.M. and P.P.P. designed and analyzed the experiments. B.S.T., C.B., W.L.G. and M.L. conducted the human genetic studies. A.V. and N.D.S. analyzed the SNP array data. J.S., N.M., J.T.F., W.L.G. and M.L. coordinated the human pathological sample acquisition and distribution. J.T.-F. reviewed all mouse pathology. Some of the experiments were conducted in the laboratory of P.B.R. A.H.B., M.N. and P.P.P. wrote the manuscript.

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 11898 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, A., Niki, M., Morotti, A. et al. Identification of DOK genes as lung tumor suppressors. Nat Genet 42, 216–223 (2010). https://doi.org/10.1038/ng.527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.527

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer