Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice

A Correction to this article was published on 25 August 2022

This article has been updated

Abstract

Studies have shown that Nrf2E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2E79Q/+. Trp53/p16-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2+/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2E79Q allele. Trp53/p16-deficient mice also developed P-SCLC, where activation of the NRF2E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE+-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Invasive tumors developed by Trp53fl/fl;p16fl/fl;Nrf2+/+ and Trp53fl/fl;p16fl/fl;Nrf2E79Q/+ mice.
Fig. 2: Characterization of P-SCLC developed by Trp53fl/fl;p16fl/fl;Nrf2E79Q/+ mice.
Fig. 3: Characterization and NRF2 genotyping of C-SCLC.
Fig. 4: Characterization of P-SCLC developed by Trp53fl/fl;p16fl/fl;Nrf2+/+ and Trp53fl/fl;p16fl/fl;Nrf2E79Q/+ mice.
Fig. 5: Heatmap of NRF2 target gene expression in human neuroendocrine lung tumors.
Fig. 6: Schematic representation of P-SCLC and C-SCLC development in Trp53fl/fl;p16fl/fl;Nrf2+/+ and Trp53fl/fl;p16fl/fl;Nrf2E79Q/+ GEMM.

Similar content being viewed by others

Code availability

The code used to generate the heatmap of target gene expression in human neuroendocrine lung tumors is available at https://github.com/jeremymsimon.

Change history

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Society AC Cancer Facts and Figures 2019. American Cancer Society Inc., 2019.

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  4. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500.

    Article  CAS  PubMed  Google Scholar 

  5. Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, et al. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 2014;13:2910–8.

    Article  CAS  PubMed  Google Scholar 

  6. Li S, Choi YL, Gong Z, Liu X, Lira M, Kan Z, et al. Comprehensive characterization of oncogenic drivers in Asian lung adenocarcinoma. J Thorac Oncol. 2016;11:2129–40.

    Article  PubMed  Google Scholar 

  7. Kim JH, Kim HS, Kim BJ. Prognostic value of KRAS mutation in advanced non-small-cell lung cancer treated with immune checkpoint inhibitors: A meta-analysis and review. Oncotarget. 2017;8:48248–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Desai A, Menon SP, Dy GK. Alterations in genes other than EGFR/ALK/ROS1 in non-small cell lung cancer: trials and treatment options. Cancer Biol Med. 2016;13:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  Google Scholar 

  10. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  11. Perez-Moreno P, Brambilla E, Thomas R, Soria JC. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18:2443–51.

    Article  CAS  Google Scholar 

  12. Rekhtman N, Paik PK, Arcila ME, Tafe LJ, Oxnard GR, Moreira AL, et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18:1167–76.

    Article  CAS  Google Scholar 

  13. George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41:1238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qian J, Massion PP. Role of chromosome 3q amplification in lung cancer. J Thorac Oncol. 2008;3:212–5.

    Article  PubMed  Google Scholar 

  16. Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME, et al. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 2003;63:7113–21.

    CAS  PubMed  Google Scholar 

  17. McCaughan F, Pole JC, Bankier AT, Konfortov BA, Carroll B, Falzon M, et al. Progressive 3q amplification consistently targets SOX2 in preinvasive squamous lung cancer. Am J Respir Crit Care Med. 2010;182:83–91.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell. 2003;4:181–9.

    Article  CAS  PubMed  Google Scholar 

  19. Demirhan O, Tastemir D, Hasturk S, Kuleci S, Hanta I. Alterations in p16 and p53 genes and chromosomal findings in patients with lung cancer: fluorescence in situ hybridization and cytogenetic studies. Cancer Epidemiol. 2010;34:472–7.

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez-Cespedes M, Reed AL, Buta M, Wu L, Westra WH, Herman JG, et al. Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non-small cell lung cancer. Oncogene. 1999;18:5843–9.

    Article  CAS  PubMed  Google Scholar 

  21. Leversha MA, Fielding P, Watson S, Gosney JR, Field JK. Expression of p53, pRB, and p16 in lung tumours: a validation study on tissue microarrays. J Pathol. 2003;200:610–9.

    Article  CAS  PubMed  Google Scholar 

  22. Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci. 2008;105:13568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochemical Pharmacol. 2013;85:705–17.

    Article  CAS  Google Scholar 

  24. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells: Devoted Mol Cell Mechanisms. 2011;16:123–40.

    Article  CAS  Google Scholar 

  25. Cloer EW, Goldfarb D, Schrank TP, Weissman BE, Major MB. NRF2 activation in cancer: from DNA to protein. Cancer Res. 2019;79:889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018;34:21–43.

    Article  CAS  PubMed  Google Scholar 

  27. Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, et al. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res. 2010;16:3743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. George J, Walter V, Peifer M, Alexandrov LB, Seidel D, Leenders F, et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun. 2018;9:1048.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alcala N, Leblay N, Gabriel AAG, Mangiante L, Hervas D, Giffon T, et al. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat Commun. 2019;10:3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peifer M, Fernández-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44:1104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kerins MJ, Ooi A. A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci Rep. 2018;8:12846.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bowman BM, Montgomery SA, Schrank TP, Simon JM, Ptacek TS, Tamir TY, et al. A conditional mouse expressing an activating mutation in NRF2 displays hyperplasia of the upper gastrointestinal tract and decreased white adipose tissue. J Path. 2020;252:125–37.

    Article  CAS  PubMed  Google Scholar 

  34. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448:807–10.

    Article  CAS  PubMed  Google Scholar 

  35. Travis WD. The 2015 WHO classification of lung tumors. Pathologe. 2014;35:188.

    Article  PubMed  Google Scholar 

  36. Maronpot RR, Boorman GA, Gaul BW Pathology of the Mouse: Reference and Atlas. Cache River Press, 1999.

  37. Reznik GK, Schuller HM, Stinson SF Tumours of the nasal cavities. IARC Sci Publ 1994: 305–24.

  38. Koike K, Jay G, Hartley JW, Schrenzel MD, Higgins RJ, Hinrichs SH. Activation of retrovirus in transgenic mice: association with development of olfactory neuroblastoma. J Virol. 1990;64:3988–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Engel NW, Neumann JE, Ahlfeld J, Wefers AK, Merk DJ, Ohli J, et al. Canonical Wnt signaling drives tumor-like lesions from Sox2-positive precursors of the murine olfactory epithelium. PLoS One. 2016;11:e0166690.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lubojemska A, Borejko M, Czapiewski P, Dziadziuszko R, Biernat W. Of mice and men: olfactory neuroblastoma among animals and humans. Vet Comp Oncol. 2016;14:e70–82.

    Article  CAS  PubMed  Google Scholar 

  41. Waalkes MP, Rehm S, Kasprzak KS, Issaq HJ. Inflammatory, proliferative, and neoplastic lesions at the site of metallic identification ear tags in Wistar [Crl:(WI)BR] rats. Cancer Res. 1987;47:2445–50.

    CAS  PubMed  Google Scholar 

  42. Zheng M. Classification and pathology of lung cancer. Surg Oncol Clin N. Am. 2016;25:447–68.

    Article  PubMed  Google Scholar 

  43. Wu M, Wang B, Gil J, Sabo E, Miller L, Gan L, et al. p63 and TTF-1 immunostaining. A useful marker panel for distinguishing small cell carcinoma of lung from poorly differentiated squamous cell carcinoma of lung. Am J Clin Pathol. 2003;119:696–702.

    PubMed  Google Scholar 

  44. Mukhopadhyay S, Katzenstein AL. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: Utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011;35:15–25.

    Article  PubMed  Google Scholar 

  45. Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, et al. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell. 2020;38:60–78.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J, et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 2011;17:1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Snow AN, Stence AA, Pruessner JA, Bossler AD, Ma D. A simple and cost-effective method of DNA extraction from small formalin-fixed paraffin-embedded tissue for molecular oncologic testing. BMC Clin Pathol. 2014;14:30.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. 2008;68:7975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cescon DW, She D, Sakashita S, Zhu CQ, Pintilie M, Shepherd FA, et al. NRF2 pathway activation and adjuvant chemotherapy benefit in lung squamous cell carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21:2499–505.

    Article  CAS  Google Scholar 

  50. Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 2017;23:1362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Travis WD. Lung tumours with neuroendocrine differentiation. Eur J Cancer. 2009;45:251–66.

    Article  PubMed  Google Scholar 

  52. Schaffer BE, Park KS, Yiu G, Conklin JF, Lin C, Burkhart DL, et al. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res. 2010;70:3877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, Stewart C, Carter SL, Cibulskis K, et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell. 2014;156:1298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, Berns A. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell. 2011;19:754–64.

    Article  CAS  PubMed  Google Scholar 

  55. Mollaoglu G, Guthrie MR, Böhm S, Brägelmann J, Can I, Ballieu PM, et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell. 2017;31:270–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.

    Article  CAS  PubMed  Google Scholar 

  57. Swanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N. Engl J Med. 2016;374:1864–73.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu Y, Chen L, Wang J, Chu X, Chen Y, Zhang Q. et al. Identification and characterization of SP cells in human lung adenocarcinoma SPC-A1. cells. Zhongguo Fei Ai Za Zhi. 2008;11:681–5.

    PubMed  Google Scholar 

  59. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr., Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21.

    Article  CAS  PubMed  Google Scholar 

  60. Lubet R, Wang Y, Zhang Z, You M. Mouse models incorporating alterations in the major tumor suppressor genes P53 and P16: their use in screening for potential carcinogens, developing further relevant mouse models, and screening for potential chemopreventive and chemotherapetutic agents. Exp Lung Res. 2005;31:117–33.

    Article  CAS  PubMed  Google Scholar 

  61. Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Dual roles of Nrf2 in cancer. Pharm Res. 2008;58:262–70.

    Article  CAS  Google Scholar 

  62. Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim Biophys Acta. 2016;1865:275–88.

    CAS  PubMed  Google Scholar 

  63. Park KS, Liang MC, Raiser DM, Zamponi R, Roach RR, Curtis SJ, et al. Characterization of the cell of origin for small cell lung cancer. Cell Cycle. 2011;10:2806–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sonkin D, Thomas A, Teicher BA. Are neuroendocrine negative small cell lung cancer and large cell neuroendocrine carcinoma with WT RB1 two faces of the same entity? Lung Cancer Manag. 2019;8:Lmt13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang S, Zimmermann S, Parikh K, Mansfield AS, Adjei AA. Current diagnosis and management of small-cell lung cancer. Mayo Clin Proc. 2019;94:1599–622.

    Article  PubMed  Google Scholar 

  66. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gabriel AAG, Mathian E, Mangiante L, Voegele C, Cahais V, Ghantous A, et al. A molecular map of lung neuroendocrine neoplasms. GigaScience. 2020;9:1–10.

    Article  Google Scholar 

  68. Laddha SV, da Silva EM, Robzyk K, Untch BR, Ke H, Rekhtman N, et al. Integrative genomic characterization identifies molecular subtypes of lung carcinoids. Cancer Res. 2019;79:4339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. George J, Walter V, Peifer M, Alexandrov LB, Seidel D, Leenders F et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Comm. 2018; https://doi.org/10.1038/s41467-018-03099-x.

  70. Hamad SH, Johnson NM, Tefft ME, Brinkman MC, Gordon SM, Clark PI, et al. Little cigars vs 3R4F cigarette: physical properties and HPHC yields. Tob Regul Sci. 2017;3:459–78.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fernandez-Cuesta L, Peifer M, Lu X, Sun R, Ozretić L, Seidal D, et al. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun. 2014;5:3518.

    Article  PubMed  Google Scholar 

  72. Mangiola S, Papenfuss A.T. tidyHeatmap: an R package for modular heatmap production based on tidy principles. J. Open Source Softw. 2020;5:2472.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Charlene Santos and her staff at the UNC-LCCC Animal Studies Core for the breeding, monitoring, weighing, and isolation of tumors of the mice; Dawud Hilliard and his staff at the UNC-Lineberger Histopathology core for tissue processing and staining for H&E and IHC; and Dr. Pablo Ariel and his staff at the UNC Microscopy Services Laboratory for their help with the microscopy studies.

Funding

This study was supported by a grant from the National Institutes of Environmental and Health Sciences (T32ES007126) (S.H.H), a Golberg Postdoctoral Fellow (S.H.H.), a grant from the National Cancer Institute (CA216051) (B.E.W, M.B.M.) and by grants 5R01CA244841-02, 5U01CA231844-04, and 5U24CA213274-05 (T.G.O.). These studies were also supported in part by a UNC Lineberger Clinical/Translational Research Award.

Author information

Authors and Affiliations

Authors

Contributions

Conception: BEW and MBM; Experimental design, methodology, and implementation: SHH, SAM, BMB, KBS, RMM, ESK, SEF, SHR, AKW, TGO, BEW, and MBM; Analysis and interpretation of data (e.g., statistical analysis, bioinformatics): SHH, SAM, JMS, ESK, JRH, DNH, TGO, BEW, and MBM; Writing, review and/or revision of the manuscript: All authors; Study supervision: BEW and MBM.

Corresponding authors

Correspondence to M. Ben Major or Bernard E. Weissman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was conducted after approval by Institutional Animal Care and Use Committee (IACUC) at the University of North Carolina at Chapel Hill (Protocol # 19-242.0)

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, S.H., Montgomery, S.A., Simon, J.M. et al. TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice. Oncogene 41, 3423–3432 (2022). https://doi.org/10.1038/s41388-022-02348-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02348-0

This article is cited by

Search

Quick links