Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Domestication history and geographical adaptation inferred from a SNP map of African rice

Abstract

African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa 3,000 years ago1,2,3. African rice is rarely grown outside sub-Saharan Africa but is of global interest because of its tolerance to abiotic stresses4,5. Here we describe a map of 2.32 million SNPs of African rice from whole-genome resequencing of 93 landraces. Population genomic analysis shows a population bottleneck in this species that began 13,000–15,000 years ago with effective population size reaching its minimum value 3,500 years ago, suggesting a protracted period of population size reduction likely commencing with predomestication management and/or cultivation. Genome-wide association studies (GWAS) for six salt tolerance traits identify 11 significant loci, 4 of which are within 300 kb of genomic regions that possess signatures of positive selection, suggesting adaptive geographical divergence for salt tolerance in this species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A SNP map for African rice.
Figure 2: Population structuring in African rice.
Figure 3: Demography of O. glaberrima and O. barthii.
Figure 4: Population phenotypic differentiation, GWAS mapping and selective sweep analysis for salinity tolerance.
Figure 5: Comparison of GWAS and selected genomic regions at the proximal end of chromosome 4.

Accession codes

Primary accessions

BioProject

Sequence Read Archive

Referenced accessions

Sequence Read Archive

References

  1. 1

    Carney, J.A. Black Rice: The African Origins of Rice Cultivation in the Americas (Harvard University Press, 2002).

  2. 2

    Linares, O.F. African rice (Oryza glaberrima): history and future potential. Proc. Natl. Acad. Sci. USA 99, 16360–16365 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Wang, M. et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat. Genet. 46, 982–988 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Sarla, N. & Mallikarjuna, S.B.P. Oryza glaberrima: a source for improvement of Oryza sativa. Curr. Sci. 89, 955–963 (2005).

    Google Scholar 

  5. 5

    Agnoun, A. et al. The African rice Oryza glaberrima Steud: knowledge distribution and prospects. Int. J. Biol. 4, 158–180 (2012).

    Google Scholar 

  6. 6

    Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).

    Article  Google Scholar 

  8. 8

    Falush, D., Stephens, M. & Pritchard, J.K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Portères, R. in Papers in African Prehistory (eds. Fage, J.D. & Oliver, R.A.) 43–58 (Cambridge University Press, 1970).

  10. 10

    Portères, R. in Origins of African Plant Domestication (eds. Harlan, J.R., De Wet, J.M. & Stemler, A.B.) 409–452 (Mouton, 1976).

  11. 11

    Pickrell, J.K. & Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Tenaillon, M.I., U'Ren, J., Tenaillon, O. & Gaut, B.S. Selection versus demography: a multilocus investigation of the domestication process in maize. Mol. Biol. Evol. 21, 1214–1225 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Caicedo, A.L. et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet. 3, 1745–1756 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Thomas, C.G. et al. Full-genome evolutionary histories of selfing, splitting, and selection in Caenorhabditis. Genome Res. 25, 667–678 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Nabholz, B. et al. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol. Ecol. 23, 2210–2227 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Eyre-Walker, A., Gaut, R.L., Hilton, H., Feldman, D.L. & Gaut, B.S. Investigation of the bottleneck leading to the domestication of maize. Proc. Natl. Acad. Sci. USA 95, 4441–4446 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Hyten, D.L. et al. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. USA 103, 16666–16671 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Zhu, Q., Zheng, X., Luo, J., Gaut, B.S. & Ge, S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol. Biol. Evol. 24, 875–888 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nat. Geosci. 1, 670–675 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Manning, K. & Timpson, A. The demographic response to Holocene climate change in the Sahara. Quat. Sci. Rev. 101, 28–35 (2014).

    Article  Google Scholar 

  22. 22

    Murray, S.S. in Fields of Change: Progress in African Archaeobotany (ed. Cappers, R.T.J.) 53–62 (Barkhuis, 2007).

  23. 23

    Zach, B. & Klee, M. Four thousand years of plant exploitation in the Chad Basin of NE Nigeria. II: Discussion on the morphology of caryopses of domesticated Pennisetum and complete catalog of the fruits and seeds of Kursakata. Veg. Hist. Archaeobot. 12, 187–204 (2003).

    Article  Google Scholar 

  24. 24

    Fuller, D.Q., Nixon, S., Stevens, C.J. & Murray, M.A. in The Archaeology of African Plant Use (eds. Stevens, C., Nixon, S., Murray, M.A. & Fuller, D.Q.) 17–24 (Left Coast Press, 2014).

  25. 25

    Eichhorn, B. & Neumann, K. in Archaeology of African Plant Use (eds. Stevens, C., Nixon, S., Murray, M.A. & Fuller, D.Q.) (Left Coast Press, 2014).

  26. 26

    Temudo, M. Planting knowledge, harvesting agro-biodiversity: a case study of Southern Guinea-Bissau rice farming. Hum. Ecol. 39, 301–321 (2011).

    Article  Google Scholar 

  27. 27

    Carney, J.A. Landscapes of technology transfer: rice cultivation and African continuities. Technol. Cult. 37, 5–35 (1996).

    Article  Google Scholar 

  28. 28

    International Rice Research Institute. Standard Evaluation System for Rice (International Rice Research Institute, 2014).

  29. 29

    Matlon, P., Randolph, T. & Guei, R. in Impact of Rice Research (eds. Pingali, P.B. & Hossain, M.) 382–404 (International Rice Research Institute, 1998).

  30. 30

    Huang, X. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Kang, H.M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Yang, T. et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol. 166, 945–959 (2014).

    Article  Google Scholar 

  34. 34

    Horie, T. et al. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J. Biosci. Bioeng. 111, 346–356 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Weir, B.S. & Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  Google Scholar 

  37. 37

    Lewontin, R.C. & Krakauer, J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74, 175–195 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Sahi, C., Singh, A., Blumwald, E. & Grover, A. Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol. Plant. 127, 1–9 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Ruan, S.L. et al. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol. 11, 34 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Allaby, R.G., Fuller, D.Q. & Brown, T.A. The genetic expectations of a protracted model for the origins of domesticated crops. Proc. Natl. Acad. Sci. USA 105, 13982–13986 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Fuller, D.Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100, 903–924 (2007).

    Article  Google Scholar 

  42. 42

    Wilcox, G. in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability (eds. Gepts, P. et al.) 92–109 (Cambridge University Press, 2012).

  43. 43

    DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  Article  Google Scholar 

  44. 44

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Flowers, J.M. et al. Whole-genome resequencing reveals extensive natural variation in the model green alga Chlamydomonas reinhardtii. Plant Cell 27, 2353–2369 (2015).

    CAS  Article  Google Scholar 

  46. 46

    Hazzouri, K.M. et al. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat. Commun. 6, 8824 (2015).

    CAS  Article  Google Scholar 

  47. 47

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Korneliussen, T.S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article  Google Scholar 

  49. 49

    Earl, D.A. & vonHoldt, B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Article  Google Scholar 

  50. 50

    Jakobsson, M. & Rosenberg, N.A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).

    CAS  Article  Google Scholar 

  51. 51

    Rosenberg, N. Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).

    Article  Google Scholar 

  52. 52

    Gronau, I., Hubisz, M.J., Gulko, B., Danko, C.G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

    CAS  Article  Google Scholar 

  53. 53

    Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    CAS  Article  Google Scholar 

  54. 54

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Gaut, B.S., Morton, B.R., McCaig, B.C. & Clegg, M.T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA 93, 10274–10279 (1996).

    CAS  Article  Google Scholar 

  56. 56

    Pearson, G., Ayers, S. & Eberhard, D. Relative salt tolerance of rice during germination and early seedling development. Soil Sci. 102, 151–156 (1966).

    CAS  Article  Google Scholar 

  57. 57

    Gregorio, G.B., Senadhira, D. & Mendoza, R.D. Screening Rice for Salinity Tolerance IRRI Discussion Paper Series 22 (IRRI, 1997).

  58. 58

    Platten, J.D., Egdane, J.A. & Ismail, A.M. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism? BMC Plant Biol. 13, 32 (2013).

    CAS  Article  Google Scholar 

  59. 59

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  60. 60

    Wu, J. et al. Physical maps and recombination frequency of six rice chromosomes. Plant J. 36, 720–730 (2003).

    CAS  Article  Google Scholar 

  61. 61

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  Article  Google Scholar 

  62. 62

    Turner, S.D. qqman: an R package for visualizing GWAS results using QQ and Manhattan plots. Preprint at bioRxiv http://dx.doi.org/10.1101/005165 (2014).

  63. 63

    Kersey, P.J. et al. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 44 D1, D574–D580 (2016).

    Article  Google Scholar 

  64. 64

    Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    CAS  Article  Google Scholar 

  65. 65

    Thornton, B. & Basu, C. Real-time PCR (qPCR) primer design using free online software. Biochem. Mol. Biol. Educ. 39, 145–154 (2011).

    CAS  Article  Google Scholar 

  66. 66

    Fischer, G. et al. Global Agro-ecological Zones Assessment for Agriculture (IASA and FAO, 2008).

  67. 67

    Fritz, S. et al. Cropland for sub-Saharan Africa: a synergistic approach using five land cover data sets. Geophys. Res. Lett. 38, L04404 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Septiningsih for critical discussions. We are grateful to M. Sock and B. Fonton for field assistance, to International Rice Research Institute staff for phenotyping assistance, and to J. Maritz and Z. Joly-Lopez for laboratory assistance. We thank the US Department of Agriculture and International Rice Research Institute for providing germplasm. This work was funded in part by grants from the National Science Foundation Plant Genome Research Program (IOS-1126971), the Zegar Family Foundation and the New York University Abu Dhabi Research Institute to M.D.P., as well as by a National Science Foundation Plant Genome Postdoctoral Fellowship (IOS-1202803) to R.S.M.

Author information

Affiliations

Authors

Contributions

R.S.M., G.B.G. and M.D.P. designed the experiments and analyses. I.K.B. and M.-N.N. helped in design and execution of the fieldwork in Senegal and Togo, respectively. R.S.M., M.S., A.P., J.A., A.B., K.D., B.G. and G.B.G. collected the data. R.S.M., J.Y.C., J.M.F., K.M.H. and M.D.P. analyzed the data. R.S.M., J.Y.C., D.Q.F. and M.D.P. wrote the manuscript.

Corresponding author

Correspondence to Michael D Purugganan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 4 and 11, and Supplementary Note (PDF 530 kb)

Supplementary Table 1

Sample data set. (XLSX 500 kb)

Supplementary Table 2

Sanger sequencing to genotype SNPs. (XLSX 494 kb)

Supplementary Table 3

Principal-component analysis of SNP variation. (XLSX 496 kb)

Supplementary Table 5

Salt tolerance phenotypes. (XLSX 35 kb)

Supplementary Table 6

Kruskal–Wallis results of phenotypes. (XLSX 75 kb)

Supplementary Table 7

Kruskal–Wallis pairwise comparisons of phenotypes between geographic populations. (XLSX 72 kb)

Supplementary Table 8

GWAS results. (XLSX 43 kb)

Supplementary Table 9

Significant 10-kb window coordinates and their maximum XPCLR values. (XLSX 40 kb)

Supplementary Table 10

Significant FST regions between NW coast and SW coast populations. (XLSX 488 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyer, R., Choi, J., Sanches, M. et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet 48, 1083–1088 (2016). https://doi.org/10.1038/ng.3633

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing