Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis

Abstract

Master transcription factors interact with DNA to establish cell type identity and to regulate gene expression in mammalian cells1,2. The genome-wide map of these transcription factor binding sites has been termed the cistrome3. Here we show that the androgen receptor (AR) cistrome undergoes extensive reprogramming during prostate epithelial transformation in man. Using human prostate tissue, we observed a core set of AR binding sites that are consistently reprogrammed in tumors. FOXA1 and HOXB13 colocalized at the reprogrammed AR binding sites in human tumor tissue. Introduction of FOXA1 and HOXB13 into an immortalized prostate cell line reprogrammed the AR cistrome to resemble that of a prostate tumor, functionally linking these specific factors to AR cistrome reprogramming. These findings offer mechanistic insights into a key set of events that drive normal prostate epithelium toward transformation and establish the centrality of epigenetic reprogramming in human prostate tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide AR binding in normal prostate epithelium and tumor tissue.
Figure 2: Tissue-specific AR binding sites.
Figure 3: FOXA1 and HOXB13 colocalize with AR at tumor-specific AR binding sites.
Figure 4: HOXB13 and FOXA1 are sufficient for reprogramming of the AR cistrome in LHSAR cells and are essential for prostate cancer cell survival.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  3. Lupien, M. & Brown, M. Cistromics of hormone-dependent cancer. Endocr. Relat. Cancer 16, 381–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Thompson, I.M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Huggins, C. Endocrine-induced regression of cancers. Cancer Res. 27, 1925–1930 (1967).

    CAS  PubMed  Google Scholar 

  6. Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barbieri, C.E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Augello, M.A., Den, R.B. & Knudsen, K.E. AR function in promoting metastatic prostate cancer. Cancer Metastasis Rev. 33, 399–411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mills, I.G. Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat. Rev. Cancer 14, 187–198 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Robinson, J.L. et al. Elevated levels of FOXA1 facilitate androgen receptor chromatin binding resulting in a CRPC-like phenotype. Oncogene 33, 5666–5674 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Y. et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat. Med. 19, 1023–1029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sampson, N., Neuwirt, H., Puhr, M., Klocker, H. & Eder, I.E. In vitro model systems to study androgen receptor signaling in prostate cancer. Endocr. Relat. Cancer 20, R49–R64 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X.S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharma, N.L. et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. He, H.H. et al. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res. 22, 1015–1025 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Massie, C.E. et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30, 2719–2733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, J. et al. An integrated network of androgen receptor, Polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berger, R. et al. Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res. 64, 8867–8875 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, B.S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glinsky, G.V., Glinskii, A.B., Stephenson, A.J., Hoffman, R.M. & Gerald, W.L. Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest. 113, 913–923 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin, H.J., Zhao, J.C., Wu, L., Kim, J. & Yu, J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat. Commun. 5, 3972 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Q. et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138, 245–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Economides, K.D. & Capecchi, M.R. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development 130, 2061–2069 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ewing, C.M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 366, 141–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, J. et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum. Genet. 132, 5–14 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  PubMed  Google Scholar 

  30. Liu, T. et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 12, R83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, Q. et al. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. Nat. Genet. 46, 126–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shao, D.D. et al. ATARiS: computational quantification of gene suppression phenotypes from multisample RNAi screens. Genome Res. 23, 665–678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. Herbert and the Molecular Biology Core Facility at the Dana-Farber Cancer Institute for their sequencing expertise. We acknowledge funding from the Prostate Cancer Foundation (Challenge Award), the H.L. Snyder Medical Foundation (M.L.F.), US National Institutes of Health (NIH) grant R01CA193910, the Anna Fuller Fund (PS#6241901; Infoed 2013-0369), the NIH GAME-ON U19 (grant U19CA148537), the Dana-Farber Prostate Cancer Specialized Program of Research Excellence (SPORE; NIH P50CA90381-11) and the NIH grant U01CA176058 (F.V. and W.C.H.).

Author information

Authors and Affiliations

Authors

Contributions

M.M.P. designed the study, performed ChIP-seq assays, analyzed data and wrote the manuscript. F.L. analyzed ChIP-seq data and performed biostatistical analysis. D.Y.T. performed shRNA and gene transduction experiments. A.C. and M.C. performed ChIP-seq experiments. R. Lenci performed cell line ChIP experiments. P.C. and J.C. assisted with ChIP-seq assays. R.A.S. participated in analyzing data and composing the manuscript. M.L., M. Bowden and R. Lis performed pathological analysis of radical prostatectomy specimens. W.C.H. and F.V. designed and analyzed Project Achilles and shRNA experiments. P.W.K. supplied radical prostatectomy specimens and participated in study design. M. Brown and H.W.L. contributed to study design, data analysis and manuscript composition. M.L.F. designed the study, analyzed ChIP-seq data and wrote the manuscript.

Corresponding author

Correspondence to Matthew L Freedman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–21 and Supplementary Tables 1, 2, 5 and 15. (PDF 16281 kb)

Supplementary Tables 3, 4 and 6–14

Supplementary Tables 3, 4 and 6–14. (XLSX 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomerantz, M., Li, F., Takeda, D. et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat Genet 47, 1346–1351 (2015). https://doi.org/10.1038/ng.3419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing