Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Common variants at 12q15 and 12q24 are associated with infant head circumference

A Corrigendum to this article was published on 29 May 2013

This article has been updated

Abstract

To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 × 10−9) and rs1042725 on chromosome 12q15 (P = 2.8 × 10−10) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height1, their effects on infant head circumference were largely independent of height (P = 3.8 × 10−7 for rs7980687 and P = 1.3 × 10−7 for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 × 10−6). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume2, Parkinson's disease and other neurodegenerative diseases3,4,5, indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Regional association plots of the three lead signals.

Change history

  • 08 May 2013

    In the version of this article initially published, Thorkild I.A. Sørensen was listed incorrectly as a contributing member of the EGG Consortium. The error has been corrected for the HTML and PDF versions of this article.

References

  1. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ikram, M.A. et al. Common variants at 6q22 and 17q21 are associated with intracranial volume. Nat. Genet. 44, 539–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. International Parkinson Disease Genomics Consortium. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

  5. Webb, A. et al. Role of the tau gene region chromosome inversion in progressive supranuclear palsy, corticobasal degeneration, and related disorders. Arch. Neurol. 65, 1473–1478 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ivanovic, D.M. et al. Head size and intelligence, learning, nutritional status and brain development. Head, IQ, learning, nutrition and brain. Neuropsychologia 42, 1118–1131 (2004).

    Article  PubMed  Google Scholar 

  7. Castellanos, F.X. et al. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry 53, 607–616 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Ivanovic, D.M. et al. Long-term effects of severe undernutrition during the first year of life on brain development and learning in Chilean high-school graduates. Nutrition 16, 1056–1063 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wiles, N.J. et al. Fetal growth and childhood behavioral problems: results from the ALSPAC cohort. Am. J. Epidemiol. 163, 829–837 (2006).

    Article  PubMed  Google Scholar 

  10. Gale, C.R. et al. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics 118, 1486–1492 (2006).

    Article  PubMed  Google Scholar 

  11. Gale, C.R., O'Callaghan, F.J., Godfrey, K.M., Law, C.M. & Martyn, C.N. Critical periods of brain growth and cognitive function in children. Brain 127, 321–329 (2004).

    Article  PubMed  Google Scholar 

  12. Fisch, R.O., Bilek, M.K., Horrobin, J.M. & Chang, P.N. Children with superior intelligence at 7 years of age: a prospective study of the influence of perinatal, medical, and socioeconomic factors. Am. J. Dis. Child. 130, 481–487 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Smit, D.J. et al. Heritability of head size in Dutch and Australian twin families at ages 0–50 years. Twin Res. Hum. Genet. 13, 370–380 (2010).

    Article  PubMed  Google Scholar 

  14. Williams, C.A., Dagli, A. & Battaglia, A. Genetic disorders associated with macrocephaly. Am. J. Med. Genet. A 146A, 2023–2037 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Kaindl, A.M. et al. Many roads lead to primary autosomal recessive microcephaly. Prog. Neurobiol. 90, 363–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Cox, J., Jackson, A.P., Bond, J. & Woods, C.G. What primary microcephaly can tell us about brain growth. Trends Mol. Med. 12, 358–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, A., Girimaji, S.C., Duvvari, M.R. & Blanton, S.H. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am. J. Hum. Genet. 84, 286–290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fredriks, A.M. et al. Continuing positive secular growth change in The Netherlands 1955–1997. Pediatr. Res. 47, 316–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Gibbs, J.R. et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Veyrieras, J.B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4, e1000214 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zeller, T. et al. Genetics and beyond–the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5, e10693 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schadt, E.E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shintani, S. et al. p12(DOC-1) is a novel cyclin-dependent kinase 2-associated protein. Mol. Cell. Biol. 20, 6300–6307 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsumoto-Taniura, N., Pirollet, F., Monroe, R., Gerace, L. & Westendorf, J.M. Identification of novel M phase phosphoproteins by expression cloning. Mol. Biol. Cell 7, 1455–1469 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saunders, C.L., Lejarraga, H. & del Pino, M. Assessment of head size adjusted for height: an anthropometric tool for clinical use based on Argentinian data. Ann. Hum. Biol. 33, 415–423 (2006).

    Article  PubMed  Google Scholar 

  26. Coyle-Thompson, C.A. & Banerjee, U. The strawberry notch gene functions with Notch in common developmental pathways. Development 119, 377–395 (1993).

    CAS  PubMed  Google Scholar 

  27. Suzuki, C. et al. Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol. Cancer Ther. 6, 542–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Radtke, F. & Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer 3, 756–767 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Ligon, A.H. et al. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am. J. Hum. Genet. 76, 340–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, X., Benson, K.F., Ashar, H.R. & Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376, 771–774 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41, 1199–1206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hsuchou, H., Kastin, A.J., Wu, X., Tu, H. & Pan, W. Corticotropin-releasing hormone receptor-1 in cerebral microvessels changes during development and influences urocortin transport across the blood-brain barrier. Endocrinology 151, 1221–1227 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Wolfe, M.S. Tau mutations in neurodegenerative diseases. J. Biol. Chem. 284, 6021–6025 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Samaranch, L. et al. The effect of MAPT H1 and APOE epsilon4 on transition from mild cognitive impairment to dementia. J. Alzheimers Dis. 22, 1065–1071 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Conrad, C. et al. Molecular evolution and genetics of the Saitohin gene and tau haplotype in Alzheimer's disease and argyrophilic grain disease. J. Neurochem. 89, 179–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Levecque, C. et al. Association of polymorphisms in the Tau and Saitohin genes with Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 75, 478–480 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gijselinck, I., Van Broeckhoven, C. & Cruts, M. Granulin mutations associated with frontotemporal lobar degeneration and related disorders: an update. Hum. Mutat. 29, 1373–1386 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Krestyaninova, M. et al. A System for Information Management in BioMedical Studies–SIMBioMS. Bioinformatics 25, 2768–2769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).

    Article  Google Scholar 

  41. Verburg, B.O. et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet. Gynecol. 31, 388–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Psaty, B.M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ikram, M.A. et al. Brain tissue volumes in the general elderly population. The Rotterdam Scan Study. Neurobiol. Aging 29, 882–890 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Sayers for helpful discussions with respect to the conducted mediation analysis. Major funding for the research in this paper is from the Academy of Finland (project grants 104781, 120315, 129269, 1114194, 134839, 129287 and Center of Excellence in Complex Disease Genetics); Biocentrum Helsinki; Biocenter, University of Oulu, Finland; the British Heart Foundation; the Canadian Institutes of Health Research (grant MOP 82893); The Children's Hospital of Philadelphia (Institute Development Award); the Cotswold Foundation (Research Development Award); the Darlington Trust; the Dutch Asthma Foundation; the Dutch Ministry of the Environment; Erasmus Medical Center Rotterdam; Erasmus University Rotterdam; The European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE project and grant agreement HEALTH-F4-2007- 201413; Exeter National Health Service (NHS) Research and Development; Fundació La Marató de TV3 (Televisió de Catalunya); Helmholtz Zentrum Muenchen, the German Research Center for Environment and Health, Institute of Epidemiology I, Neuherberg; Instituto de Salud Carlos III (FIS PI081151 and PS09/00432); Institut für Umweltmedizinische Forschung (IUF) Düsseldorf; Marien-Hospital Wesel; the UK MRC (G0500539, G0600331, PrevMetSyn/Salve/MRC and G0600705); the Municipal Health Service Rotterdam; the National Health and Medical Research Council of Australia (403981 and 003209); the National Public Health Institute, Helsinki, Finland; the Netherlands Organisation for Scientific Research (NWO) and the Netherlands Organisation for Health Research and Development (ZonMw) (grants SPI 56-464-14192, 904-61-090, 904-61-193, 912-03-031, 480-04-004 and 400-05-717); the US NHLBI (grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01)); the US NIH (grant 1R01HD056465-01A1); the Peninsula NIHR Clinical Research Facility; the RAINE Medical Research Foundation; the Rotterdam Homecare Foundation; South West NHS Research and Development; Stichting Astmabestrijding; Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR) Rotterdam; Technical University Munich; the Telethon Institute for Child Health Research; UFZ–Centre for Environmental Research Leipzig–Halle; University Hospital Oulu, Finland; University of Bristol; University of Leipzig; the Wellcome Trust (project grant GR069224); the Western Australian DNA Bank; the Western Australian Genetic Epidemiology Resource and ZonMW (grant 21000074). Data exchange and deposition has been facilitated by the SIMBioMS platform. Personal funding was provided by the Dutch Kidney Foundation (C08.2251 to H.R.T.), the MRC UK (G0500539, PrevMetSyn and PS0476 to S. Das), a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust grant 085541/Z/08/Z to R.M.F.), a MRC New Investigator Award (MRC G0800582 to D.M.E.) and Wellcome Trust 4-year PhD studentships (WT083431MA to J.P.K. and WT088431MA to J.L.B.). I.P. and J.F.-B. are in part supported by the European Community's ENGAGE grant HEALTH-F4-2007-201413, A.T.H. is employed as a core member of the Peninsula NIHR Clinical Research Facility and V.W.V.J. is funded by the Netherlands Organisation for Health Research (ZonMw 90700303 and 916.10159). Detailed acknowledgments by study are given in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Project design was carried out by H.R.T., J.P.B., F.G., M. Kerkhof, A.H., E.A.P.S., J.S., M.M.B.B., L.J.L., A.v.d.L., T.H.M., S.S., A.V.S., B.F., S.F.A.G., A.J.v.d.H., J.P.N., L.J.P., H.-E.W., C.D., M.I.M., G.H.K., X.E., A.T.H., M. Melbye, H.B., C.E.P., H.H., G.D.S., J.H., M.-R.J. and V.W.V.J. Sample collection and phenotyping was performed by H.R.T., M. Kaakinen, M.G., M. Kerkhof, M.A.I., K.B., B.L.K.C., J.E., F.D.M., I.P., J.S., S. Debette, M.F., V.G., S.S., M.W.V., J.F.-B., R.M.C., A.-L.H., C.I., A.M., J.P.N., A. Pouta., U.S., M.S., N.H.V., G.H.K., A.T.H., H.H., M.-R.J. and V.W.V.J. Genotyping was performed by R.M.F., L.J.B., J.L.B., C.E.K., S.J.L., N.K., M.M.-N., F.R., C.T., A.I.F.B., A.-L.H., M.L., W.L.M., J.P.N., L.J.P., A. Palotie, S.M.R., A.G.U., C.M.v.D., X.E., C.E.P., E.W. and M.-R.J. Statistical analysis was performed by H.R.T., B.S.P., E.T., S. Das, D.O.M.-K., N.M.W., M. Kaakinen, E.K.-M., J.P.B., R.M.F., F.G., D.L.C., M. Kerkhof, N.J.T., M.A.I., P.C., D.M.E., J.P.K., J.L., G.M., P.F.O., H.Y., S.S., B.F., S.F.A.G., U.S. and C.D. The manuscript was written by H.R.T., B.S.P., E.T., S. Das, D.O.M.-K., G.D.S., J.H., M.-R.J. and V.W.V.J. The EGG, EAGLE and CHARGE consortia provided the infrastructure for conducting the genome-wide association meta-analysis, collaboration and discussion.

Corresponding authors

Correspondence to George Davey Smith, Joachim Heinrich, Marjo-Riitta Jarvelin or Vincent W V Jaddoe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 3–12, Supplementary Figures 1–3 and Supplementary Note (PDF 383 kb)

Supplementary Table 1

Basic characteristics, exclusions, genotyping, quality control and imputation in discovery studies (XLS 77 kb)

Supplementary Table 2

Basic characteristics, exclusions, genotyping, quality control and imputation in replication studies (XLS 71 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taal, H., St Pourcain, B., Thiering, E. et al. Common variants at 12q15 and 12q24 are associated with infant head circumference. Nat Genet 44, 532–538 (2012). https://doi.org/10.1038/ng.2238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing