Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability

Subjects

Abstract

As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 C and 85% relative humidity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Design and performance of the perovskite top cell.
Figure 2: Design and performance of the perovskite/silicon tandem cell.
Figure 3: Stability of perovskite top cell.

References

  1. Best Research-Cell Efficiencies (NREL, 2016); http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  2. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  3. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2014).

    Article  Google Scholar 

  4. Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    Article  Google Scholar 

  5. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  Google Scholar 

  6. Bailie, C. D. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2014).

    Article  Google Scholar 

  7. Todorov, T., Gershon, T., Gunawan, O., Sturdevant, C. & Guha, S. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl. Phys. Lett. 105, 173902 (2014).

    Article  Google Scholar 

  8. Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).

    Article  Google Scholar 

  9. Löper, P. et al. Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2015).

    Article  Google Scholar 

  10. Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).

    Article  Google Scholar 

  11. Werner, J. et al. Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energ. Mat. Sol. Cells 141, 407–413 (2015).

    Article  Google Scholar 

  12. Kranz, L. et al. High-efficiency polycrystalline thin film tandem solar cells. J. Phys. Chem. Lett. 6, 2676–2681 (2015).

    Article  Google Scholar 

  13. Yang, Y. M. et al. Multilayer transparent top electrode for solution processed perovskite/Cu(In,Ga)(Se,S)2 four terminal tandem solar cells. ACS Nano 9, 7714–7721 (2015).

    Article  Google Scholar 

  14. Chen, B. et al. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells. Adv. Energy Mater. 6, 1601128 (2016).

    Article  Google Scholar 

  15. Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016).

    Article  Google Scholar 

  16. Yang, Z. et al. Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Adv. Mater. 28, 8990–8997 (2016).

    Article  Google Scholar 

  17. Fu, F. et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 6, 8932 (2015).

    Article  Google Scholar 

  18. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016).

    Article  Google Scholar 

  19. Lal, N. N., White, T. P. & Catchpole, K. R. Optics and light trapping for tandem solar cells on silicon. IEEE J. Photovolt. 4, 1380–1386 (2014).

    Article  Google Scholar 

  20. Bailie, C. D. & McGehee, M. D. High-efficiency tandem perovskite solar cells. MRS Bull. 40, 681–686 (2015).

    Article  Google Scholar 

  21. Ginley, D. S., Hosono, H. & Paine, D. C. Handbook of Transparent Conductors (Springer, 2011); http://dx.doi.org/10.1007/978-1-4419-1638-9

    Book  Google Scholar 

  22. Liao, L. S. et al. Ion-beam-induced surface damages on tris-(8-hydroxyquinoline) aluminum. Appl. Phys. Lett. 75, 1619–1621 (1999).

    Article  Google Scholar 

  23. Leijtens, T. et al. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015).

    Article  Google Scholar 

  24. Liu, P. et al. Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Appl. Phys. Lett. 106, 193903 (2015).

    Article  Google Scholar 

  25. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  Google Scholar 

  26. Lee, J. W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  27. Yi, C. et al. Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    Article  Google Scholar 

  28. Liu, X. et al. Spray reaction prepared FA1-xCsxPbI3 solid solution as light harvester for perovskite solar cells with improved humidity stability. RSC Adv. 6, 14792–14798 (2016).

    Article  Google Scholar 

  29. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  Google Scholar 

  30. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  Google Scholar 

  31. Bakke, J. R., Pickrahn, K. L., Brennan, T. P. & Bent, S. F. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale 3, 3482–3508 (2011).

    Article  Google Scholar 

  32. Palmstrom, A. F., Santra, P. K. & Bent, S. F. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale 7, 12266–12283 (2015).

    Article  Google Scholar 

  33. Kim, B.-J. et al. Highly efficient and bending durable perovskite solar cells: toward wearable power source. Energy Environ. Sci. 8, 916–921 (2015).

    Article  Google Scholar 

  34. Baena, J. P. C. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015).

    Article  Google Scholar 

  35. Zhu, Z. et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. 28, 6478–6484 (2016).

    Article  Google Scholar 

  36. You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotech. 11, 75–81 (2016).

    Article  Google Scholar 

  37. Kim, J. H. et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695–701 (2015).

    Article  Google Scholar 

  38. Bush, K. A. et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    Article  Google Scholar 

  39. Mullings, M. N., Hägglund, C. & Bent, S. F. Tin oxide atomic layer deposition from tetrakis(dimethylamino)tin and water. J. Vac. Sci. Technol. A 31, 61503 (2013).

    Article  Google Scholar 

  40. Guziewicz, E. et al. ALD grown zinc oxide with controllable electrical properties. Semicond. Sci. Technol. 27, 74011 (2012).

    Article  Google Scholar 

  41. Despeisse, M. et al. Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Appl. Phys. Lett. 96, 10–13 (2010).

    Article  Google Scholar 

  42. Larson, B. W. et al. Thermal [6,6]- >[6,6] isomerization and decomposition of PCBM (phenyl-C61-butyric acid methyl ester). Chem. Mater. 26, 2361–2367 (2014).

    Article  Google Scholar 

  43. Mullings, M. N. et al. Thin film characterization of zinc tin oxide deposited by thermal atomic layer deposition. Thin Solid Films 556, 186–194 (2014).

    Article  Google Scholar 

  44. Hägglund, C. et al. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition. J. Vac. Sci. Technol. A 34, 21516 (2016).

    Article  Google Scholar 

  45. Holman, Z. C. et al. Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7–15 (2012).

    Article  Google Scholar 

  46. Holman, Z. C. et al. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J. Appl. Phys. 113, 13107 (2013).

    Article  Google Scholar 

  47. Holman, Z. C., De Wolf, S. & Ballif, C. Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell. Light Sci. Appl. 2, e106 (2013).

    Article  Google Scholar 

  48. Holman, Z. C. & Kortshagen, U. R. A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals. Nanotechnology 21, 335302 (2010).

    Article  Google Scholar 

  49. Kim, I. S. & Martinson, A. B. F. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers. J. Mater. Chem. A 3, 20092–20096 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Leilaeioun and K. Fisher for assistance with silicon cell fabrication and simulation. The information, data and work presentedherein were funded in part by the US Department of Energy (DOE) Sunshot NextGen III program under award number DE-EE0006707, the National Science Foundation (NSF) and Department of Energy under NSF Cooperative Agreement No. EEC-1041895, the Research Corporation for Science Advancement through Scialog Collaborative Innovation Award Number 23460, and the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology’s Low Energy Electronic Systems research programme. K.A.B. is supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-114747. The optical measurements were performed in part at the Stanford Nanofabrication Facility’s nSiL laboratory, which is funded by NSF award ARI-0963061. AFM and SEM were performed at the Stanford Nano Shared Facilities (SNSF). We appreciate those who provided supplies for device encapsulation: J. Kapur (Dupont) for Surlyn, L. Postak (Quanex) for Solargain edge tape, T. Orfley (Corning) for eagle glass, and S. Ebers and S. Lee (Ulbrich Solar Technologies) for bus ribbon.

Author information

Authors and Affiliations

Authors

Contributions

K.A.B. led the fabrication of the perovskite solar cell; A.F.P. performed the ALD process for the window layer on the perovskite solar cell; Z.J.Y. led the fabrication of the silicon heterojunction solar cell; M.B. assisted with the fabrication of the silicon nanoparticle rear reflector. R.C. packaged devices. D.P.M. initiated the perovskite development. R.L.Z.H. developed the NiOx layer. C.D.B., J.P.M., T.L. and I.M.P. aided in project ideation and planning. M.C.M. assisted in semi-transparent-perovskite fabrication. N.R. performed AFM measurements. R.P. performed transfer-matrix optical modelling. S.S. assisted in ALD work. D.H. assisted in packaging and stability testing. W.M. and F.M. assisted in ITO deposition. K.A.B., A.F.P., Z.J.Y., Z.C.H. and M.D.M. wrote the manuscript, and all the rest discussed and reviewed the manuscript. Z.C.H. and M.D.M. led the entire project.

Corresponding authors

Correspondence to Zachary C. Holman or Michael D. McGehee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–11, Supplementary References. (PDF 1320 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bush, K., Palmstrom, A., Yu, Z. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2, 17009 (2017). https://doi.org/10.1038/nenergy.2017.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing