Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction

Abstract

In the on going quest towards lithium-battery chemistries beyond the lithium-ion technology, the lithium–sulfur system is emerging as one of the most promising candidates. The major outstanding challenge on the route to commercialization is controlling the so-called polysulfide shuttle, which is responsible for the poor cycling efficiency of the current generation of lithium–sulfur batteries. However, the mechanistic understanding of the reactions underlying the polysulfide shuttle is still incomplete. Here we report the direct observation of lithium polysulfides in a lithium–sulfur cell during operation by means of operando X-ray diffraction. We identify signatures of polysulfides adsorbed on the surface of a glass-fibre separator and monitor their evolution during cycling. Furthermore, we demonstrate that the adsorption of the polysulfides onto SiO2 can be harnessed for buffering the polysulfide redox shuttle. The use of fumed silica as an electrolyte additive therefore significantly improves the specific charge and Coulombic efficiency of lithium–sulfur batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Typical voltage profile of a Li–S cell and the corresponding reaction mechanisms.
Figure 2: Operando XRD measurements of a Li–S cell.
Figure 3: Operando XRD measurements of a Li–S cell using SiO2 as electrolyte additive.
Figure 4: Microscale changes in the morphology of glass fibres.
Figure 5: Nanoscale changes in the glass-fibre morphology.
Figure 6: Operando XRD measurements of a Li–S cell after multiple cycles (8th and 33rd cycle).
Figure 7: Cycling performance of Li–S cells with and without SiO2 electrolyte additive.

References

  1. 1

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  2. 2

    Tollefson, J. Car industry: charging up the future. Nature 456, 436–440 (2008).

    Article  Google Scholar 

  3. 3

    Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  Google Scholar 

  4. 4

    Rosenman, A. et al. Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015).

    Article  Google Scholar 

  5. 5

    Son, Y., Lee, J. S., Son, Y., Jang, J. H. & Cho, J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1500110 (2015).

    Article  Google Scholar 

  6. 6

    Lv, D. P. et al. High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv. Energy Mater. 5, 1402290 (2015).

    Article  Google Scholar 

  7. 7

    Manthiram, A., Chung, S. H. & Zu, C. X. Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015).

    Article  Google Scholar 

  8. 8

    Wang, J. L., He, Y. S. & Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 27, 569–575 (2015).

    Article  Google Scholar 

  9. 9

    Zhou, Y. et al. Enabling prominent high-rate and cycle performances in one lithium–sulfur battery: designing permselective gateways for Li+ transportation in holey-CNT/S cathodes. Adv. Mater. 27, 3774–3781 (2015).

    Article  Google Scholar 

  10. 10

    Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  Google Scholar 

  11. 11

    Lee, J. T., Zhao, Y. Y., Kim, H., Cho, W. I. & Yushin, G. Sulfur infiltrated activated carbon cathodes for lithium sulfur cells: the combined effects of pore size distribution and electrolyte molarity. J. Power Sources 248, 752–761 (2014).

    Article  Google Scholar 

  12. 12

    Huang, C. et al. Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014).

    Article  Google Scholar 

  13. 13

    Barchasz, C., Mesguich, F., Dijon, J., Lepretre, J. C., Patoux, S. & Alloin, F. Novel positive electrode architecture for rechargeable lithium/sulfur batteries. J. Power Sources 211, 19–26 (2012).

    Article  Google Scholar 

  14. 14

    Zhou, G. M., Paek, E., Hwang, G. S. & Manthiram, A. High-performance lithium–sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes. Adv. Energy Mater. 6, 1501355 (2016).

    Article  Google Scholar 

  15. 15

    Jozwiuk, A., Sommer, H., Janek, J. & Brezesinski, T. Fair performance comparison of different carbon blacks in lithium–sulfur batteries with practical mass loadings-simple design competes with complex cathode architecture. J. Power Sources 296, 454–461 (2015).

    Article  Google Scholar 

  16. 16

    Zhang, S. S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013).

    Article  Google Scholar 

  17. 17

    Barghamadi, M. et al. Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium sulfur battery. J. Power Sources 295, 212–220 (2015).

    Article  Google Scholar 

  18. 18

    Barghamadi, M. et al. Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ. Sci. 7, 3902–3920 (2014).

    Article  Google Scholar 

  19. 19

    Sun, Y. M., Seh, Z. W., Li, W. Y., Yao, H. B., Zheng, G. Y. & Cui, Y. In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium–sulfur batteries. Nano Energy 11, 579–586 (2015).

    Article  Google Scholar 

  20. 20

    Nelson, J. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–6343 (2012).

    Article  Google Scholar 

  21. 21

    Elazari, R. et al. Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy. J. Electrochem. Soc. 157, A1131–A1138 (2010).

    Article  Google Scholar 

  22. 22

    Lacey, M. J., Edstrom, K. & Brandell, D. Analysis of soluble intermediates in the lithium–sulfur battery by a simple in situ electrochemical probe. Electrochem. Commun. 46, 91–93 (2014).

    Article  Google Scholar 

  23. 23

    Risse, S. et al. Multidimensional operando analysis of macroscopic structure evolution in lithium sulfur cells by X-ray radiography. Phys. Chem. Chem. Phys. 18, 10630–10636 (2016).

    Article  Google Scholar 

  24. 24

    Marceau, H. et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte. J. Power Sources 319, 247–254 (2016).

    Article  Google Scholar 

  25. 25

    Gorlin, Y. et al. Operando characterization of intermediates produced in a lithium–sulfur battery. J. Electrochem. Soc. 162, A1146–A1155 (2015).

    Article  Google Scholar 

  26. 26

    Patel, M. U. M. & Dominko, R. Application of in operando UV/Vis spectroscopy in lithium–sulfur batteries. ChemSusChem 7, 2167–2175 (2014).

    Article  Google Scholar 

  27. 27

    Patel, M. U. M., Demir-Cakan, R., Morcrette, M., Tarascon, J. M., Gaberscek, M. & Dominko, R. Li–S battery analyzed by UV/Vis in operando mode. ChemSusChem 6, 1177–1181 (2013).

    Article  Google Scholar 

  28. 28

    Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).

    Article  Google Scholar 

  29. 29

    Villevieille, C. & Novak, P. A metastable beta-sulfur phase stabilized at room temperature during cycling of high efficiency carbon fibre–sulfur composites for Li–S batteries. J. Mater. Chem. A 1, 13089–13092 (2013).

    Article  Google Scholar 

  30. 30

    Walus, S. et al. New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chem. Commun. 49, 7899–7901 (2013).

    Article  Google Scholar 

  31. 31

    Kulisch, J., Sommer, H., Brezesinski, T. & Janek, J. Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Phys. Chem. Chem. Phys. 16, 18765–18771 (2014).

    Article  Google Scholar 

  32. 32

    Cabelguen, P.-E. Advanced research on lithium–sulfur batteries: studies of lithium polysulfides. MSc thesis, Univ. Waterloo (2013).

  33. 33

    Lay, M. D., Varazo, K. & Stickney, J. L. Formation of sulfur atomic layers on gold from aqueous solutions of sulfide and thiosulfate: studies using EC-STM, UHV-EC, and TLEC. Langmuir 19, 8416–8427 (2003).

    Article  Google Scholar 

  34. 34

    Hwang, J. Y. et al. High-energy, high-rate, lithium–sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv. Energy Mater. 6, 1501480 (2016).

    Article  Google Scholar 

  35. 35

    Walus, S. et al. Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 5, 1500165 (2015).

    Article  Google Scholar 

  36. 36

    Scherrer, P. Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Nachrichten von der Gesellschaft der Wissenschaften, Göttingen. Nachr Ges Wiss Göttingen, Math-Phys Kl 2, 98–100 (1918).

    Google Scholar 

  37. 37

    Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T. & Nazar, L. F. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).

    Article  Google Scholar 

  38. 38

    Yao, H. B. et al. Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ. Sci. 7, 3381–3390 (2014).

    Article  Google Scholar 

  39. 39

    Helen, M. et al. Single step transformation of sulphur to Li2S2/Li2S in Li–S batteries. Sci. Rep. 5, 12146 (2015).

    Article  Google Scholar 

  40. 40

    Zhu, J. D. et al. Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. J. Membr. Sci. 504, 89–96 (2016).

    Article  Google Scholar 

  41. 41

    Bleith, P., Kaiser, H., Novák, P. & Villevieille, C. In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries. Electrochim. Acta 176, 18–21 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Swiss National Science Foundation (Project No. 200021_144292) and thank Robert Bosch GmbH for providing lithium PSs. The authors would like to express their gratitude to P. Novák for fruitful discussions about Li–S batteries. H. Kaiser and C. Junker are acknowledged for their help with all technical aspects of this study. C. Goudet-Prunier is thanked for her help in writing the manuscript. S. Sallard is acknowledged for help and contributions to the experimental part of the study.

Author information

Affiliations

Authors

Contributions

C.V., J.C. and R.B. conceived the project. J.C. and C.V. designed the experimental set-up for operando XRD, built the experimental set-up and performed the experiments. C.M. performed the XPS and TEM analyses. C.V., J.C. and R.B. analysed the data. C.V. and J.C. wrote the manuscript, with contributions from R.B., S.T. and L.G.

Corresponding author

Correspondence to Claire Villevieille.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Notes, Supplementary References. (PDF 460 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conder, J., Bouchet, R., Trabesinger, S. et al. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat Energy 2, 17069 (2017). https://doi.org/10.1038/nenergy.2017.69

Download citation

Further reading