Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Perovskite ink with wide processing window for scalable high-efficiency solar cells

Abstract

Perovskite solar cells have made tremendous progress using laboratory-scale spin-coating methods in the past few years owing to advances in controls of perovskite film deposition. However, devices made via scalable methods are still lagging behind state-of-the-art spin-coated devices because of the complicated nature of perovskite crystallization from a precursor state. Here we demonstrate a chlorine-containing methylammonium lead iodide precursor formulation along with solvent tuning to enable a wide precursor-processing window (up to 8 min) and a rapid grain growth rate (as short as 1 min). Coupled with antisolvent extraction, this precursor ink delivers high-quality perovskite films with large-scale uniformity. The ink can be used by both spin-coating and blade-coating methods with indistinguishable film morphology and device performance. Using a blade-coated absorber, devices with 0.12-cm2 and 1.2-cm2 areas yield average efficiencies of 18.55% and 17.33%, respectively. We further demonstrate a 12.6-cm2 four-cell module (88% geometric fill factor) with 13.3% stabilized active-area efficiency output.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Precursor-film processing window.
Figure 2: Crystal structure evolution.
Figure 3: Uniformity of blade-coated perovskite films.
Figure 4: Comparison between blade coating and spin coating.
Figure 5: Device-level uniformity.
Figure 6: PV characteristics of champion devices.

References

  1. 1

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. 2

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. 3

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  Google Scholar 

  4. 4

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  Google Scholar 

  5. 5

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  Google Scholar 

  6. 6

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  Google Scholar 

  7. 7

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  Google Scholar 

  8. 8

    Best Research-Cell Efficiencies (NREL, 2016); http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  9. 9

    Zhou, Y., Game, O. S., Pang, S. & Padture, N. P. Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J. Phys. Chem. Lett. 6, 4827–4839 (2015).

    Article  Google Scholar 

  10. 10

    Aguiar, J. A. et al. In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 9, 2372–2382 (2016).

    Article  Google Scholar 

  11. 11

    Williams, S. T., Rajagopal, A., Chueh, C.-C. & Jen, A. K. Y. Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. J. Phys. Chem. Lett. 7, 811–819 (2016).

    Article  Google Scholar 

  12. 12

    Razza, S., Castro-Hermosa, S., Di Carlo, A. & Brown, T. M. Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 4, 091508 (2016).

    Article  Google Scholar 

  13. 13

    Razza, S. et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J. Power Sources 277, 286–291 (2015).

    Article  Google Scholar 

  14. 14

    Yang, Z. et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5, 1500328 (2015).

    Article  Google Scholar 

  15. 15

    Deng, Y. et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 8, 1544–1550 (2015).

    Article  Google Scholar 

  16. 16

    Hwang, K. et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247 (2015).

    Article  Google Scholar 

  17. 17

    Barrows, A. T. et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014).

    Article  Google Scholar 

  18. 18

    Wei, Z., Chen, H., Yan, K. & Yang, S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 13239–13243 (2014).

    Article  Google Scholar 

  19. 19

    Li, S.-G. et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 3, 9092–9097 (2015).

    Article  Google Scholar 

  20. 20

    Chen, H., Wei, Z., Zheng, X. & Yang, S. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15, 216–226 (2015).

    Article  Google Scholar 

  21. 21

    Huang, J.-H. et al. Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci. Rep. 5, 15889 (2015).

    Article  Google Scholar 

  22. 22

    Back, H. et al. Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Sol. Energy Mater. Sol. Cells 144, 309–315 (2016).

    Article  Google Scholar 

  23. 23

    Mallajosyula, A. T. et al. Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Appl. Mater. Today 3, 96–102 (2016).

    Article  Google Scholar 

  24. 24

    Ro, H. W. et al. Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy Environ. Sci. 9, 2835–2846 (2016).

    Article  Google Scholar 

  25. 25

    Matteocci, F. et al. Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Phys. Chem. Chem. Phys. 16, 3918–3923 (2014).

    Article  Google Scholar 

  26. 26

    Priyadarshi, A. et al. A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. Energy Environ. Sci. 9, 3687–3692 (2016).

    Article  Google Scholar 

  27. 27

    Seo, J. et al. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ. Sci. 7, 2642–2646 (2014).

    Article  Google Scholar 

  28. 28

    Qiu, W. et al. Pinhole-free perovskite films for efficient solar modules. Energy Environ. Sci. 9, 484–489 (2016).

    Google Scholar 

  29. 29

    Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  Google Scholar 

  30. 30

    Salim, T. et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015).

    Article  Google Scholar 

  31. 31

    Xiao, M. et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014).

    Article  Google Scholar 

  32. 32

    Ahn, N. et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015).

    Article  Google Scholar 

  33. 33

    Zhao, Y. X. & Zhu, K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014).

    Article  Google Scholar 

  34. 34

    Yan, K. et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).

    Article  Google Scholar 

  35. 35

    Zhou, Y. et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells. J. Mater. Chem. A 3, 8178–8184 (2015).

    Article  Google Scholar 

  36. 36

    Jo, Y. et al. High performance of planar perovskite solar cells produced from PbI2(DMSO) and PbI2(NMP) complexes by intramolecular exchange. Adv. Mater. Interfaces 3, 1500768 (2016).

    Article  Google Scholar 

  37. 37

    Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  Google Scholar 

  38. 38

    Yang, M. et al. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv. Mater. 27, 6363–6370 (2015).

    Article  Google Scholar 

  39. 39

    Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    Article  Google Scholar 

  40. 40

    Kim, H. D., Ohkita, H., Benten, H. & Ito, S. Photovoltaic performance of perovskite solar cells with different grain sizes. Adv. Mater. 28, 917–922 (2016).

    Article  Google Scholar 

  41. 41

    Della Gaspera, E. et al. Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 13, 249–257 (2015).

    Article  Google Scholar 

  42. 42

    Ramirez Quiroz, C. O. et al. Pushing efficiency limits for semitransparent perovskite solar cells. J. Mater. Chem. A 3, 24071–24081 (2015).

    Article  Google Scholar 

  43. 43

    Chen, B. et al. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells. Adv. Energy Mater. 6, 1601128 (2016).

    Article  Google Scholar 

  44. 44

    Ihly, R. et al. Efficient charge extraction and slow recombination in organic-inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy Environ. Sci. 9, 1439–1449 (2016).

    Article  Google Scholar 

  45. 45

    Wojciechowski, K. et al. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. Acs Nano 8, 12701–12709 (2014).

    Article  Google Scholar 

  46. 46

    Ip, A. H. et al. A two-step route to planar perovskite cells exhibiting reduced hysteresis. Appl. Phys. Lett. 106, 143902 (2015).

    Article  Google Scholar 

  47. 47

    Ke, W. et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J. Mater. Chem. A 4, 14276–14283 (2016).

    Article  Google Scholar 

  48. 48

    Li, X. et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016).

    Article  Google Scholar 

  49. 49

    Huang, F. et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10–18 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The work at the National Renewable Energy Laboratory is supported by the US Department of Energy under Contract No. DE-AC36-08GO28308. We acknowledge the support by the hybrid perovskite solar cell program of the National Center for Photovoltaics funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. We thank S. Mauger for help with XRF and viscosity measurement.

Author information

Affiliations

Authors

Contributions

K.Z. and M.Y. conceived the idea and designed the experiment. M.Y., Z.L., and D.H.K. fabricated and characterized perovskite thin film and devices. M.Y. and M.O.R. optimized large-area devices. M.Y., T.R.K., K.Z., and M.F.A.M.v.H. fabricated and characterized mini-module. M.Y. and S.S. measured XRF. K.Z., J.J.B., and M.F.A.M.v.H. supervised this project. K.Z. and M.Y. wrote the manuscript with inputs and discussion from all authors.

Corresponding authors

Correspondence to Maikel F. A. M. van Hest or Kai Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–13 and Supplementary Tables 1–3 (PDF 1177 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, Z., Reese, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat Energy 2, 17038 (2017). https://doi.org/10.1038/nenergy.2017.38

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing