Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bioinspired catalytic materials for energy-relevant conversions

The structure of active sites of enzymes involved in bioenergetic processes can inspire design of active, stable and cost-effective catalysts for renewable-energy technologies. For these materials to reach maturity, the benefits of bioinspired systems must be combined with practical technological requirements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structures of metallo-porphyrin-based ORR catalysts.
Figure 2: Design of efficient bioinspired nanomaterials mimicking the active site of hydrogenases.
Figure 3

References

  1. 1

    Ozin, G. A. Energy Environ. Sci. 8, 1682–1684 (2015).

    Article  Google Scholar 

  2. 2

    Gordon, R. B., Bertram, M. & Graedel, T. E. Proc. Natl Acad. Sci. USA 103, 1209–1214 (2006).

    Article  Google Scholar 

  3. 3

    Kongkanand, A. & Mathias, M. F. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article  Google Scholar 

  4. 4

    Collman, J. P. et al. Science 315, 1565–1568 (2007).

    Article  Google Scholar 

  5. 5

    Chatterjee, S., Sengupta, K., Karlin, K. D. & Dey, A. J. Am. Chem. Soc. 137, 12897–12905 (2015).

    Article  Google Scholar 

  6. 6

    Hijazi, I. et al. J. Am. Chem. Soc. 136, 6348–6354 (2014).

    Article  Google Scholar 

  7. 7

    Zitolo, A. et al. Nat. Mater. 14, 937–942 (2015).

    Article  Google Scholar 

  8. 8

    Gasteiger, H. A. & Markovic, N. M. Science 324, 48–49 (2009).

    Article  Google Scholar 

  9. 9

    Benner, S. A., Ellington, A. D. & Tauer, A. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989).

    Article  Google Scholar 

  10. 10

    Armstrong, F. A. & Hirst, J. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    Article  Google Scholar 

  11. 11

    Brazzolotto, D. et al. Nat. Chem. 8, 1054–1060 (2016).

    Article  Google Scholar 

  12. 12

    Simmons, T. R., Berggren, G., Bacchi, M., Fontecave, M. & Artero, V. Coord. Chem. Rev. 270–271, 127–150 (2014).

    Article  Google Scholar 

  13. 13

    Priyadarshani, N. et al. Am. Chem. Soc. Catal. 6, 6037–6049 (2016).

    Google Scholar 

  14. 14

    Ginovska-Pangovska, B., Dutta, A., Reback, M. L., Linehan, J. C. & Shaw, W. J. Acc. Chem. Res. 47, 2621–2630 (2014).

    Article  Google Scholar 

  15. 15

    DuBois, D. L. Inorg. Chem. 53, 3935–3960 (2014).

    Article  Google Scholar 

  16. 16

    Tran, P. D. et al. Angew. Chem. Int. Edn 50, 1371–1374 (2011).

    Article  Google Scholar 

  17. 17

    Le Goff, A. et al. Science 326, 1384–1387 (2009).

    Article  Google Scholar 

  18. 18

    Gentil, S. et al. Angew. Chem. Int. Edn 56, 1845–1849 (2017).

    Article  Google Scholar 

  19. 19

    Rodríguez-Maciá, P. et al. Electroanalysis 28, 2452–2458 (2016).

    Article  Google Scholar 

  20. 20

    Rodriguez-Macia, P. et al. Angew. Chem. Int. Edn 54, 12303–12307 (2015).

    Article  Google Scholar 

  21. 21

    Huan, T. N. et al. Energy Environ. Sci. 9, 940–947 (2016).

    Article  Google Scholar 

  22. 22

    Tran, P. D. et al. Chem. Sci. 6, 2050–2053 (2015).

    Article  Google Scholar 

  23. 23

    Zaharieva, I. et al. Energy Environ. Sci. 4, 2400–2408 (2011).

    Article  Google Scholar 

  24. 24

    Liu, J. et al. Proc. Natl Acad. Sci. USA 113, 5530–5535 (2016).

    Article  Google Scholar 

  25. 25

    Tran, P. D. et al. Nat. Mater. 15, 640–646 (2016).

    Article  Google Scholar 

  26. 26

    Kanan, M. W. et al. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  Google Scholar 

  27. 27

    Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. J. Am. Chem. Soc. 138, 16639–16644 (2016).

    Article  Google Scholar 

  28. 28

    Huan, T. N. et al. Am. Chem. Soc. Catal. 7, 1520–1525 (2017).

    Google Scholar 

  29. 29

    Lutterman, D. A., Surendranath, Y. & Nocera, D. G. J. Am. Chem. Soc. 131, 3838–3839 (2009).

    Article  Google Scholar 

  30. 30

    Barile, C. J. et al. Nat. Mater. 13, 619–623 (2014).

    Article  Google Scholar 

  31. 31

    Yang, P. & Tarascon, J.-M. Nat. Mater. 11, 560–563 (2012).

    Article  Google Scholar 

  32. 32

    Steele, B. C. H. & Heinzel, A. Nature 414, 345–352 (2001).

    Article  Google Scholar 

  33. 33

    Vesborg, P. C. K. & Jaramillo, T. F. R. Soc. Chem. Adv. 2, 7933–7947 (2012).

    Google Scholar 

  34. 34

    Gebel, G. & Diat, O. Structure des Membranes Ionomères. Institut Nanosciences et Cryogéniehttp://go.nature.com/2vkLNpm (2011).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vincent Artero.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artero, V. Bioinspired catalytic materials for energy-relevant conversions. Nat Energy 2, 17131 (2017). https://doi.org/10.1038/nenergy.2017.131

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing