The structure of active sites of enzymes involved in bioenergetic processes can inspire design of active, stable and cost-effective catalysts for renewable-energy technologies. For these materials to reach maturity, the benefits of bioinspired systems must be combined with practical technological requirements.
Access options
Subscribe to Journal
Get full journal access for 1 year
$59.00
only $4.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



References
- 1
Ozin, G. A. Energy Environ. Sci. 8, 1682–1684 (2015).
- 2
Gordon, R. B., Bertram, M. & Graedel, T. E. Proc. Natl Acad. Sci. USA 103, 1209–1214 (2006).
- 3
Kongkanand, A. & Mathias, M. F. J. Phys. Chem. Lett. 7, 1127–1137 (2016).
- 4
Collman, J. P. et al. Science 315, 1565–1568 (2007).
- 5
Chatterjee, S., Sengupta, K., Karlin, K. D. & Dey, A. J. Am. Chem. Soc. 137, 12897–12905 (2015).
- 6
Hijazi, I. et al. J. Am. Chem. Soc. 136, 6348–6354 (2014).
- 7
Zitolo, A. et al. Nat. Mater. 14, 937–942 (2015).
- 8
Gasteiger, H. A. & Markovic, N. M. Science 324, 48–49 (2009).
- 9
Benner, S. A., Ellington, A. D. & Tauer, A. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989).
- 10
Armstrong, F. A. & Hirst, J. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).
- 11
Brazzolotto, D. et al. Nat. Chem. 8, 1054–1060 (2016).
- 12
Simmons, T. R., Berggren, G., Bacchi, M., Fontecave, M. & Artero, V. Coord. Chem. Rev. 270–271, 127–150 (2014).
- 13
Priyadarshani, N. et al. Am. Chem. Soc. Catal. 6, 6037–6049 (2016).
- 14
Ginovska-Pangovska, B., Dutta, A., Reback, M. L., Linehan, J. C. & Shaw, W. J. Acc. Chem. Res. 47, 2621–2630 (2014).
- 15
DuBois, D. L. Inorg. Chem. 53, 3935–3960 (2014).
- 16
Tran, P. D. et al. Angew. Chem. Int. Edn 50, 1371–1374 (2011).
- 17
Le Goff, A. et al. Science 326, 1384–1387 (2009).
- 18
Gentil, S. et al. Angew. Chem. Int. Edn 56, 1845–1849 (2017).
- 19
Rodríguez-Maciá, P. et al. Electroanalysis 28, 2452–2458 (2016).
- 20
Rodriguez-Macia, P. et al. Angew. Chem. Int. Edn 54, 12303–12307 (2015).
- 21
Huan, T. N. et al. Energy Environ. Sci. 9, 940–947 (2016).
- 22
Tran, P. D. et al. Chem. Sci. 6, 2050–2053 (2015).
- 23
Zaharieva, I. et al. Energy Environ. Sci. 4, 2400–2408 (2011).
- 24
Liu, J. et al. Proc. Natl Acad. Sci. USA 113, 5530–5535 (2016).
- 25
Tran, P. D. et al. Nat. Mater. 15, 640–646 (2016).
- 26
Kanan, M. W. et al. J. Am. Chem. Soc. 132, 13692–13701 (2010).
- 27
Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. J. Am. Chem. Soc. 138, 16639–16644 (2016).
- 28
Huan, T. N. et al. Am. Chem. Soc. Catal. 7, 1520–1525 (2017).
- 29
Lutterman, D. A., Surendranath, Y. & Nocera, D. G. J. Am. Chem. Soc. 131, 3838–3839 (2009).
- 30
Barile, C. J. et al. Nat. Mater. 13, 619–623 (2014).
- 31
Yang, P. & Tarascon, J.-M. Nat. Mater. 11, 560–563 (2012).
- 32
Steele, B. C. H. & Heinzel, A. Nature 414, 345–352 (2001).
- 33
Vesborg, P. C. K. & Jaramillo, T. F. R. Soc. Chem. Adv. 2, 7933–7947 (2012).
- 34
Gebel, G. & Diat, O. Structure des Membranes Ionomères. Institut Nanosciences et Cryogéniehttp://go.nature.com/2vkLNpm (2011).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Artero, V. Bioinspired catalytic materials for energy-relevant conversions. Nat Energy 2, 17131 (2017). https://doi.org/10.1038/nenergy.2017.131
Published:
Further reading
-
Synergy between metals for small molecule activation: Enzymes and bio-inspired complexes
Coordination Chemistry Reviews (2021)
-
Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes
Chem Catalysis (2021)
-
Nanotechnology for catalysis and solar energy conversion
Nanotechnology (2021)
-
Mimochrome, a metalloporphyrin‐based catalytic Swiss knife†
Biotechnology and Applied Biochemistry (2020)
-
Metal‐Rich Chalcogenides for Electrocatalytic Hydrogen Evolution: Activity of Electrodes and Bulk Materials
ChemElectroChem (2020)