Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A facile surface chemistry route to a stabilized lithium metal anode


Lithium metal is a highly desirable anode for lithium rechargeable batteries, having the highest theoretical specific capacity and lowest electrochemical potential of all material candidates. Its most notable problem is dendritic growth upon Li plating, which is a major safety concern and exacerbates reactivity with the electrolyte. Here we report that Li-rich composite alloy films synthesized in situ on lithium by a simple and low-cost methodology effectively prevent dendrite growth. This is attributed to the synergy of fast lithium ion migration through Li-rich ion conductive alloys coupled with an electronically insulating surface component. The protected lithium is stabilized to sustain electrodeposition over 700 cycles (1,400 h) of repeated plating/stripping at a practical current density of 2 mA cm−2 and a 1,500 cycle-life is realized for a cell paired with a Li4Ti5O12 positive electrode. These findings open up a promising avenue to stabilize lithium metal with surface layers having targeted properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of alloy-protected lithium foil.
Figure 2: XPS analysis of the film-protected lithium metal before and after Li plating.
Figure 3: Measurements of d.c. conductivity of lithium metal protected with the alloy-composite films using blocking electrodes.
Figure 4: Scanning electron microscopy and optical microscopy study of the alloy-protected lithium metal.
Figure 5: Schematic depicting the function of the alloy-protected lithium foil.
Figure 6: Electrochemical performance of protected lithium metal.


  1. 1

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  2. 2

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  Google Scholar 

  3. 3

    Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Article  Google Scholar 

  4. 4

    Lu, Y. C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    Article  Google Scholar 

  5. 5

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  Google Scholar 

  6. 6

    Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  Google Scholar 

  7. 7

    Busche, M. R. et al. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).

    Article  Google Scholar 

  8. 8

    Gallagher, K. G. et al. Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

    Article  Google Scholar 

  9. 9

    Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    Article  Google Scholar 

  10. 10

    Aurbach, D. et al. Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries. J. Electrochem. Soc. 149, A1267–A1277 (2002).

    Article  Google Scholar 

  11. 11

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  12. 12

    Wang, H. et al. A reversible dendrite-free high-areal-capacity lithium metal electrode. Nat. Commun. 8, 15106 (2017).

    Article  Google Scholar 

  13. 13

    Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article  Google Scholar 

  14. 14

    Gofer, Y., Ben-Zion, M. & Aurbach, D. Solutions of LiAsF in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163–178 (1992).

    Article  Google Scholar 

  15. 15

    Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  Google Scholar 

  16. 16

    Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Article  Google Scholar 

  17. 17

    Suo, L., Hu, Y. S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 2513 (2013).

    Google Scholar 

  18. 18

    Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).

    Article  Google Scholar 

  19. 19

    Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    Article  Google Scholar 

  20. 20

    Bucur, C. B., Lita, A., Osada, N. & Muldoon, J. A. Soft, multilayered lithium–electrolyte interface. Energy Environ. Sci. 9, 112–118 (2016).

    Article  Google Scholar 

  21. 21

    Umeda, G. et al. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593–1599 (2011).

    Article  Google Scholar 

  22. 22

    Yang, C., Yin, Y. X., Zhang, S. F., Liu, N. W. & Guo, Y. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).

    Article  Google Scholar 

  23. 23

    Zhang, R. et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2015).

    Article  Google Scholar 

  24. 24

    Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).

    Article  Google Scholar 

  25. 25

    Armand, M. B., Duclot, M. J. & Rigaud, P. Polymer solid electrolytes: stability domain. Solid State Ion. 3–4, 429–430 (1981).

    Article  Google Scholar 

  26. 26

    Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

    Article  Google Scholar 

  27. 27

    Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    Article  Google Scholar 

  28. 28

    Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Nat. Chem. 28, 2400–2407 (2016).

    Google Scholar 

  29. 29

    Ren, Y., Shen, Y., Lin, Y. & Nan, C. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015).

    Article  Google Scholar 

  30. 30

    Richardson, T. J. & Chen, G. Solid solution lithium alloy cermet anodes. J. Power Sources 174, 810–812 (2007).

    Article  Google Scholar 

  31. 31

    Stark, J. K., Ding, Y. & Kohl, P. A. Dendrite-free electrodeposition and reoxidation of lithium–sodium alloy for metal-anode battery. J. Electrochem. Soc. 158, A1100–A1105 (2011).

    Article  Google Scholar 

  32. 32

    Shi, Z., Liu, M. & Gole, J. L. Electrochemical properties of Li–Zn alloy electrodes prepared by kinetically controlled vapor deposition for lithium batteries. Electrochem. Sol. State Lett. 3, 312–315 (2000).

    Article  Google Scholar 

  33. 33

    Hiratani, M., Miyauchi, K. & Kudo, T. Effect of a lithium alloy layer inserted between a lithium anode and a solid electrolyte. Solid State Ion. 28–30, 1406–1410 (1988).

    Article  Google Scholar 

  34. 34

    Hiratani, M. et al. Solid state lithium battery. US patent 4,645,726 (1987).

  35. 35

    Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).

    Article  Google Scholar 

  36. 36

    Kim, J. S., Kim, D. W., Jung, H. T. & Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780–2787 (2015).

    Article  Google Scholar 

  37. 37

    Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

    Article  Google Scholar 

  38. 38

    Web, S. A., Baggetto, L., Bridges, C. A. & Veith, G. M. The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J. Power Sources 248, 1105–1117 (2014).

    Article  Google Scholar 

  39. 39

    Hewitt, R. W. & Winograd, N. Oxidation of polycrystalline indium studied by X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy. J. Appl. Phys. 51, 2620–2624 (1980).

    Article  Google Scholar 

  40. 40

    Kanamura, K., Tamura, H., Shiraishi, S. & Takehara, Z. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4 . J. Electrochem. Soc. 142, 340–347 (1995).

    Article  Google Scholar 

  41. 41

    Dologlou, E. Self diffusion in solid lithium. Glass Phys. Chem. 36, 570–574 (2010).

    Article  Google Scholar 

  42. 42

    Park, M., Zhang, X., Chung, M., Less, G. B. & Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904–7929 (2010).

    Article  Google Scholar 

  43. 43

    Huggins, R. A. Polyphase alloys as rechargeable electrodes in advanced battery systems. J. Power Sources 22, 341–350 (1988).

    Article  Google Scholar 

  44. 44

    Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    Article  Google Scholar 

  45. 45

    Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of Li[Li1∕3Ti5∕3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995).

    Article  Google Scholar 

Download references


This research was supported by the BASF International Scientific Network for Electrochemistry and Batteries. L.F.N. also thanks NSERC for generous support via their Canada Research Chair, and Discovery Grant programs. We greatly appreciate helpful discussions with K. Zavadil, P. Bruce and J. Janek.

Author information




X.L. and L.F.N. designed the experimental work. X.L. performed all the physical measurements on the films and the electrochemistry on symmetric and full cells. I.R.K. and Q.P. carried out the resistivity measurements of the protective layers. M.S.S., H.H. and X.S. participated in the discussion of the data. X.L., I.R.K. and L.F.N. wrote the manuscript. L.F.N. directed the work.

Corresponding author

Correspondence to Linda F. Nazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12. (PDF 1327 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Pang, Q., Kochetkov, I. et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat Energy 2, 17119 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing