Solar power needs a more ambitious cost target

Article metrics

Solar power is increasingly economical, but its value to the grid decreases as its penetration grows, and existing technologies may not remain competitive. We propose a mid-century cost target of US$0.25 per W and encourage the industry to invest in new technologies and deployment models to meet it.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Estimates of the falling long-term value of solar PV as penetration increases.
Figure 2: Historical learning curve for PV modules.

References

  1. 1

    Stranks, S. D. & Snaith, H. J. Nature Nanotech. 10, 391–402 (2015).

  2. 2

    Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Nature Mater. 13, 796–801 (2014).

  3. 3

    He, Z. et al. Nature Photon. 9, 174–179 (2015).

  4. 4

    Sun Shot Initiative Fact Sheet (US Department of Energy, 2015); http://go.nature.com/Pa72yY

  5. 5

    Wesoff, E. First Solar CEO: ‘By 2017, we'll be under $1.00 per watt fully installed’. Greentech Media (24 June 2015); http://go.nature.com/5BNvtT

  6. 6

    Trends 2015 in Photovoltaic Applications (International Energy Agency, 2015); http://go.nature.com/GEB3Qm

  7. 7

    Energy Technology Perspectives 2014 (International Energy Agency, 2014).

  8. 8

    Solar Photovoltaics Technology Brief (International Renewable Energy Agency, 2013); http://go.nature.com/bvnzce

  9. 9

    Shah, V. & Booream-Phelps, J. Crossing the Chasm: Solar Grid Parity in a Low Oil Price Era (Deutsche Bank, 2015).

  10. 10

    Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 (US Energy Information Administration, 2015); http://go.nature.com/56G1xc

  11. 11

    Shiao, M. J. US solar PV system prices continue to decline in Q3 2015. Greentech Media (16 December 2015); http://go.nature.com/SfvByS

  12. 12

    Lamont, A. D. Energy Econ. 30, 1208–1231 (2008).

  13. 13

    Laughton, M. Renewable Energy Sources (CRC Press, 1990).

  14. 14

    Denholm, P. & Margolis, R. M. Energy Policy 35, 2852–2861 (2007).

  15. 15

    Amatya, R. et al. The Future of Solar Energy (MIT Energy Initiative, 2015).

  16. 16

    Hirth, L. IET Renew. Power Gen. 9, 37–45 (2015).

  17. 17

    Olson, A. & Jones, R. Electricity J. 25, 17–27 (2012).

  18. 18

    Mills, A. & Wiser, R. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California (Ernest Orlando Lawrence Berkeley National Laboratory, 2012).

  19. 19

    Gowrisankaran, G., Reynolds, S. S. & Samano, M. Intermittency and the Value of Renewable Energy (National Bureau of Economic Research, 2011).

  20. 20

    Gilmore, J., Vanderwaal, B., Rose, I. & Riesz, J. IET Renew. Power Gen. 9, 46–56 (2015).

  21. 21

    Clò, S. & D'Adamo, G. The Impact of Solar Penetration on Solar and Gas Market Value: An Application to the Italian Power Market (Universidad de Valencia, 2014).

  22. 22

    Darghouth, N., Barbose, G. & Wiser, R. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions (Ernest Orlando Lawrence Berkeley National Laboratory, 2013).

  23. 23

    St. John, J. California's NEM 2.0 decision keeps retails rate for rooftop solar, adds time-of-use. Greentech Media (28 January 2016); http://go.nature.com/aBIvTa

  24. 24

    Borenstein, S. The Market Value and Cost of Solar Photovoltaic Electricity Production (Center for the Study of Energy Markets, 2008).

  25. 25

    Nykvist, B. & Nilsson, M. Nature Clim. Change. 5, 329–332 (2015).

  26. 26

    Safaei, H. & Keith, D. W. Energy Environ. Sci. 8, 3409–3417 (2015).

  27. 27

    Mills, A. D. & Wiser, R. H. Appl. Energy 147, 269–278 (2015).

  28. 28

    Wozabal, D., Graf, C. & Hirschmann, D. OR Spectrum. 37, 1–23 (2015).

  29. 29

    Delarue, E. & Morris, J. Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models (MIT Joint Program on the Science and Policy of Global Change, 2015).

  30. 30

    Subtil-Lacerda, J. & van den Bergh, J. C. J. M. Renew. Sust. Energy Rev. 54, 331–340 (2016).

  31. 31

    Rubin, E. S., Azevedo, I. M. L., Jaramillo, P. & Yeh, S. Energy Policy 86, 198–218 (2015).

  32. 32

    Reichelstein, S. & Sahoo, A. Cost and Price Dynamics of Solar PV Modules (Stanford University, 2015).

  33. 33

    Mayer, J. et al. Current and Future Cost of Photovoltaics (Fraunhofer ISE, 2015).

  34. 34

    Sivaram, V., Stranks, S. & Snaith, H. Perovskite solar cells could beat the efficiency of silicon. Scientific American (1 July 2015); http://go.nature.com/h5TrhQ

  35. 35

    Almansouri, I., Ho-Baillie, A. & Green, M. A. Jpn. J. Appl. Phys. 54, 08KD04 (2015).

  36. 36

    Green, M. Commercial progress and challenges for photovoltaics. Nature Energy 1, 15015 (2016).

  37. 37

    Leo, K. Nature Nanotech. 10, 574–575 (2015).

  38. 38

    Kamat, P. J. Phys. Chem. Lett. 4, 908–918 (2013).

  39. 39

    Zimmerman, E. et al. Nature Photon. 8, 669–672 (2014).

  40. 40

    Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K. & Woodhouse, M. Preprint at http://go.nature.com/5qQRHP (2015).

  41. 41

    Baker, E., Fowlie, M., Lemoine, D. & Reynolds, S. S. Annu. Rev. Res. Econ. 5, 387–426 (2013).

Download references

Author information

Correspondence to Varun Sivaram.

Rights and permissions

Reprints and Permissions

About this article

Further reading