Solar power is increasingly economical, but its value to the grid decreases as its penetration grows, and existing technologies may not remain competitive. We propose a mid-century cost target of US$0.25 per W and encourage the industry to invest in new technologies and deployment models to meet it.
Access options
Subscribe to Journal
Get full journal access for 1 year
$59.00
only $4.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.


References
- 1
Stranks, S. D. & Snaith, H. J. Nature Nanotech. 10, 391–402 (2015).
- 2
Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Nature Mater. 13, 796–801 (2014).
- 3
He, Z. et al. Nature Photon. 9, 174–179 (2015).
- 4
Sun Shot Initiative Fact Sheet (US Department of Energy, 2015); http://go.nature.com/Pa72yY
- 5
Wesoff, E. First Solar CEO: ‘By 2017, we'll be under $1.00 per watt fully installed’. Greentech Media (24 June 2015); http://go.nature.com/5BNvtT
- 6
Trends 2015 in Photovoltaic Applications (International Energy Agency, 2015); http://go.nature.com/GEB3Qm
- 7
Energy Technology Perspectives 2014 (International Energy Agency, 2014).
- 8
Solar Photovoltaics Technology Brief (International Renewable Energy Agency, 2013); http://go.nature.com/bvnzce
- 9
Shah, V. & Booream-Phelps, J. Crossing the Chasm: Solar Grid Parity in a Low Oil Price Era (Deutsche Bank, 2015).
- 10
Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 (US Energy Information Administration, 2015); http://go.nature.com/56G1xc
- 11
Shiao, M. J. US solar PV system prices continue to decline in Q3 2015. Greentech Media (16 December 2015); http://go.nature.com/SfvByS
- 12
Lamont, A. D. Energy Econ. 30, 1208–1231 (2008).
- 13
Laughton, M. Renewable Energy Sources (CRC Press, 1990).
- 14
Denholm, P. & Margolis, R. M. Energy Policy 35, 2852–2861 (2007).
- 15
Amatya, R. et al. The Future of Solar Energy (MIT Energy Initiative, 2015).
- 16
Hirth, L. IET Renew. Power Gen. 9, 37–45 (2015).
- 17
Olson, A. & Jones, R. Electricity J. 25, 17–27 (2012).
- 18
Mills, A. & Wiser, R. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California (Ernest Orlando Lawrence Berkeley National Laboratory, 2012).
- 19
Gowrisankaran, G., Reynolds, S. S. & Samano, M. Intermittency and the Value of Renewable Energy (National Bureau of Economic Research, 2011).
- 20
Gilmore, J., Vanderwaal, B., Rose, I. & Riesz, J. IET Renew. Power Gen. 9, 46–56 (2015).
- 21
Clò, S. & D'Adamo, G. The Impact of Solar Penetration on Solar and Gas Market Value: An Application to the Italian Power Market (Universidad de Valencia, 2014).
- 22
Darghouth, N., Barbose, G. & Wiser, R. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions (Ernest Orlando Lawrence Berkeley National Laboratory, 2013).
- 23
St. John, J. California's NEM 2.0 decision keeps retails rate for rooftop solar, adds time-of-use. Greentech Media (28 January 2016); http://go.nature.com/aBIvTa
- 24
Borenstein, S. The Market Value and Cost of Solar Photovoltaic Electricity Production (Center for the Study of Energy Markets, 2008).
- 25
Nykvist, B. & Nilsson, M. Nature Clim. Change. 5, 329–332 (2015).
- 26
Safaei, H. & Keith, D. W. Energy Environ. Sci. 8, 3409–3417 (2015).
- 27
Mills, A. D. & Wiser, R. H. Appl. Energy 147, 269–278 (2015).
- 28
Wozabal, D., Graf, C. & Hirschmann, D. OR Spectrum. 37, 1–23 (2015).
- 29
Delarue, E. & Morris, J. Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models (MIT Joint Program on the Science and Policy of Global Change, 2015).
- 30
Subtil-Lacerda, J. & van den Bergh, J. C. J. M. Renew. Sust. Energy Rev. 54, 331–340 (2016).
- 31
Rubin, E. S., Azevedo, I. M. L., Jaramillo, P. & Yeh, S. Energy Policy 86, 198–218 (2015).
- 32
Reichelstein, S. & Sahoo, A. Cost and Price Dynamics of Solar PV Modules (Stanford University, 2015).
- 33
Mayer, J. et al. Current and Future Cost of Photovoltaics (Fraunhofer ISE, 2015).
- 34
Sivaram, V., Stranks, S. & Snaith, H. Perovskite solar cells could beat the efficiency of silicon. Scientific American (1 July 2015); http://go.nature.com/h5TrhQ
- 35
Almansouri, I., Ho-Baillie, A. & Green, M. A. Jpn. J. Appl. Phys. 54, 08KD04 (2015).
- 36
Green, M. Commercial progress and challenges for photovoltaics. Nature Energy 1, 15015 (2016).
- 37
Leo, K. Nature Nanotech. 10, 574–575 (2015).
- 38
Kamat, P. J. Phys. Chem. Lett. 4, 908–918 (2013).
- 39
Zimmerman, E. et al. Nature Photon. 8, 669–672 (2014).
- 40
Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K. & Woodhouse, M. Preprint at http://go.nature.com/5qQRHP (2015).
- 41
Baker, E., Fowlie, M., Lemoine, D. & Reynolds, S. S. Annu. Rev. Res. Econ. 5, 387–426 (2013).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sivaram, V., Kann, S. Solar power needs a more ambitious cost target. Nat Energy 1, 16036 (2016). https://doi.org/10.1038/nenergy.2016.36
Published:
Further reading
-
Photonics for Photovoltaics: Advances and Opportunities
ACS Photonics (2021)
-
The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States
Applied Energy (2021)
-
Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities
Renewable and Sustainable Energy Reviews (2020)
-
Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040
Energies (2020)
-
Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system
Energy Policy (2020)