Solar power is increasingly economical, but its value to the grid decreases as its penetration grows, and existing technologies may not remain competitive. We propose a mid-century cost target of US$0.25 per W and encourage the industry to invest in new technologies and deployment models to meet it.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Stranks, S. D. & Snaith, H. J. Nature Nanotech. 10, 391–402 (2015).
Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Nature Mater. 13, 796–801 (2014).
He, Z. et al. Nature Photon. 9, 174–179 (2015).
Sun Shot Initiative Fact Sheet (US Department of Energy, 2015); http://go.nature.com/Pa72yY
Wesoff, E. First Solar CEO: ‘By 2017, we'll be under $1.00 per watt fully installed’. Greentech Media (24 June 2015); http://go.nature.com/5BNvtT
Trends 2015 in Photovoltaic Applications (International Energy Agency, 2015); http://go.nature.com/GEB3Qm
Energy Technology Perspectives 2014 (International Energy Agency, 2014).
Solar Photovoltaics Technology Brief (International Renewable Energy Agency, 2013); http://go.nature.com/bvnzce
Shah, V. & Booream-Phelps, J. Crossing the Chasm: Solar Grid Parity in a Low Oil Price Era (Deutsche Bank, 2015).
Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 (US Energy Information Administration, 2015); http://go.nature.com/56G1xc
Shiao, M. J. US solar PV system prices continue to decline in Q3 2015. Greentech Media (16 December 2015); http://go.nature.com/SfvByS
Lamont, A. D. Energy Econ. 30, 1208–1231 (2008).
Laughton, M. Renewable Energy Sources (CRC Press, 1990).
Denholm, P. & Margolis, R. M. Energy Policy 35, 2852–2861 (2007).
Amatya, R. et al. The Future of Solar Energy (MIT Energy Initiative, 2015).
Hirth, L. IET Renew. Power Gen. 9, 37–45 (2015).
Olson, A. & Jones, R. Electricity J. 25, 17–27 (2012).
Mills, A. & Wiser, R. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California (Ernest Orlando Lawrence Berkeley National Laboratory, 2012).
Gowrisankaran, G., Reynolds, S. S. & Samano, M. Intermittency and the Value of Renewable Energy (National Bureau of Economic Research, 2011).
Gilmore, J., Vanderwaal, B., Rose, I. & Riesz, J. IET Renew. Power Gen. 9, 46–56 (2015).
Clò, S. & D'Adamo, G. The Impact of Solar Penetration on Solar and Gas Market Value: An Application to the Italian Power Market (Universidad de Valencia, 2014).
Darghouth, N., Barbose, G. & Wiser, R. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions (Ernest Orlando Lawrence Berkeley National Laboratory, 2013).
St. John, J. California's NEM 2.0 decision keeps retails rate for rooftop solar, adds time-of-use. Greentech Media (28 January 2016); http://go.nature.com/aBIvTa
Borenstein, S. The Market Value and Cost of Solar Photovoltaic Electricity Production (Center for the Study of Energy Markets, 2008).
Nykvist, B. & Nilsson, M. Nature Clim. Change. 5, 329–332 (2015).
Safaei, H. & Keith, D. W. Energy Environ. Sci. 8, 3409–3417 (2015).
Mills, A. D. & Wiser, R. H. Appl. Energy 147, 269–278 (2015).
Wozabal, D., Graf, C. & Hirschmann, D. OR Spectrum. 37, 1–23 (2015).
Delarue, E. & Morris, J. Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models (MIT Joint Program on the Science and Policy of Global Change, 2015).
Subtil-Lacerda, J. & van den Bergh, J. C. J. M. Renew. Sust. Energy Rev. 54, 331–340 (2016).
Rubin, E. S., Azevedo, I. M. L., Jaramillo, P. & Yeh, S. Energy Policy 86, 198–218 (2015).
Reichelstein, S. & Sahoo, A. Cost and Price Dynamics of Solar PV Modules (Stanford University, 2015).
Mayer, J. et al. Current and Future Cost of Photovoltaics (Fraunhofer ISE, 2015).
Sivaram, V., Stranks, S. & Snaith, H. Perovskite solar cells could beat the efficiency of silicon. Scientific American (1 July 2015); http://go.nature.com/h5TrhQ
Almansouri, I., Ho-Baillie, A. & Green, M. A. Jpn. J. Appl. Phys. 54, 08KD04 (2015).
Green, M. Commercial progress and challenges for photovoltaics. Nature Energy 1, 15015 (2016).
Leo, K. Nature Nanotech. 10, 574–575 (2015).
Kamat, P. J. Phys. Chem. Lett. 4, 908–918 (2013).
Zimmerman, E. et al. Nature Photon. 8, 669–672 (2014).
Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K. & Woodhouse, M. Preprint at http://go.nature.com/5qQRHP (2015).
Baker, E., Fowlie, M., Lemoine, D. & Reynolds, S. S. Annu. Rev. Res. Econ. 5, 387–426 (2013).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sivaram, V., Kann, S. Solar power needs a more ambitious cost target. Nat Energy 1, 16036 (2016). https://doi.org/10.1038/nenergy.2016.36
Published:
DOI: https://doi.org/10.1038/nenergy.2016.36
This article is cited by
-
When every cent counts
Nature Energy (2018)
-
The underestimated potential of solar energy to mitigate climate change
Nature Energy (2017)
-
Now we are one
Nature Energy (2017)