Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ observation of heat-induced degradation of perovskite solar cells

Abstract

The lack of thermal stability of perovskite solar cells is hindering the progress of this technology towards adoption in the consumer market. Different pathways of thermal degradation are activated at different temperatures in these complex nanostructured hybrid composites. Thus, it is essential to explore the thermal response of the mesosuperstructured composite device to engineer materials and operating protocols. Here we produce devices according to four well-established recipes, and characterize their photovoltaic performance as they are heated within the operational range. The devices are analysed using transmission electron microscopy as they are further heated in situ, to monitor changes in morphology and chemical composition. We identify mechanisms for structural and chemical changes, such as iodine and lead migration, which appear to be correlated to the synthesis conditions. In particular, we identify a correlation between exposure of the perovskite layer to air during processing and elemental diffusion during thermal treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cross-sectional view.
Figure 2: Cross-sectional views under heating.
Figure 3: Thermal cycling.
Figure 4: Photovoltaic properties.
Figure 5: Temperature evolution of elemental migration.
Figure 6: STEM-HAADF signal evolution.

References

  1. 1

    Green, M., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015).

    Article  Google Scholar 

  2. 2

    Snaith, H. J. Perovskites: the emergence of a new era for a low-cost, high efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    Article  Google Scholar 

  3. 3

    Grätzel, M. The light and shade of perovskite solar cells. Nature Mater. 13, 838–842 (2014).

    Article  Google Scholar 

  4. 4

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature Photon. 8, 506–514 (2014).

    Article  Google Scholar 

  5. 5

    Song, T.-B. et al. Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3, 9032–9050 (2015).

    Article  Google Scholar 

  6. 6

    Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015).

    Article  Google Scholar 

  7. 7

    Yang, J., Siempelkamp, B. D., Liu, D. & Kelly, T. L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015).

    Article  Google Scholar 

  8. 8

    Habisreutinger, S. N. et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014).

    Article  Google Scholar 

  9. 9

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotech. 10, 391–402 (2015).

    Article  Google Scholar 

  10. 10

    Mei, A. et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  Google Scholar 

  11. 11

    Terborg, R. & Rohde, M. Application of high energy-resolution silicon drift detectors (SDD) for quantitative light element analysis. Microsc. Microanal. 9, 120–121 (2003).

    Article  Google Scholar 

  12. 12

    de la Peña, F. et al. Hyperspy: hyperspectral data analysis toolbox. http://dx.doi.org/10.5281/zenodo.16850 (2015).

  13. 13

    Burdet, P., Croxall, S. A. & Midgley, P. A. Enhanced quantification for 3D SEM/EDS: using the full set of available X-ray lines. Ultramicroscopy 148, 158–167 (2015).

    Article  Google Scholar 

  14. 14

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  Google Scholar 

  15. 15

    Ko, H.-S., Lee, J.-W. & Park, N.-G. 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 . J. Mater. Chem. A 3, 8808–8815 (2015).

    Article  Google Scholar 

  16. 16

    Hawash, Z., Ono, L. K., Raga, S. R., Lee, M. V. & Qi, Y. Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chem. Mater. 27, 562–569 (2015).

    Article  Google Scholar 

  17. 17

    Kim, H.-S. & Park, N.-G. Parameters affecting I−V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5, 2927–2934 (2014).

    Article  Google Scholar 

  18. 18

    Ono, L. K., Raga, S. R., Wang, S., Kato, Y. & Qi, Y. Temperature-dependent hysteresis effects in perovskite-based solar cells. J. Mater. Chem. A 3, 9074–9080 (2015).

    Article  Google Scholar 

  19. 19

    Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  Google Scholar 

  20. 20

    Aharon, S., Dymshits, A., Rotem, A. & Etgar, L. Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J. Mater. Chem. A 3, 9171–9178 (2014).

    Article  Google Scholar 

  21. 21

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  22. 22

    Dualeh, A., Moehl, T., Nazeeruddin, M. K. & Grätzel, M. Temperature dependence of transport properties of spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells. ACS Nano 7, 2292–2301 (2013).

    Article  Google Scholar 

  23. 23

    Nguyen, W. H., Bailie, C. D., Unger, E. L. & McGehee, M. D. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using Spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 136, 10996–11001 (2014).

    Article  Google Scholar 

  24. 24

    Bailie, C. D., Unger, E. L., Zakeeruddin, S. M., Grätzel, M. & McGehee, M. D. Melt-infiltration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 16, 4864–4870 (2014).

    Article  Google Scholar 

  25. 25

    Munroe, P. R. The application of focused ion beam microscopy in the material sciences. Mater. Charact. 60, 2–13 (2009).

    Article  Google Scholar 

  26. 26

    Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  27. 27

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Commun. 6, 7497 (2015).

    Article  Google Scholar 

  28. 28

    O’Mahony, F. T. F. et al. Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2 . J. Mater. Chem. A 3, 7219–7223 (2015).

    Article  Google Scholar 

  29. 29

    Matteocci, F. et al. Blocking layer optimisation of poly(3-hexylthiopene) based solid state dye sensitized solar cells. Org. Electron. 14, 1882–1890 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

G.D., S.C. and C.D. acknowledge funding from ERC under grant number 259619 PHOTO EM. C.D. acknowledges financial support from the EU under grant number 312483 ESTEEM2. F.M., L.C. and A.D.C. acknowledge funding from ‘Polo Solare Organico’ Regione Lazio, the ‘DSSCX’ MIUR-PRIN2010 and FP7 ITN ‘Destiny’. G.D. and S.C. thank F. de la Peña and P. Burdet for assistance with PCA analysis.

Author information

Affiliations

Authors

Contributions

G.D., F.M., A.D.C. and C.D. conceived and designed the experiment. F.M. produced the devices. F.M. and L.C. carried out photovoltaic characterization. G.D. and S.C. carried out sample preparation, electron microscopy and data analysis. All authors contributed to the discussion of the results and to the writing of the manuscript.

Corresponding author

Correspondence to G. Divitini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-9 (PDF 861 kb)

Supplementary Video 1

Sample A: montage of STEM-HAADF images upon heating. (AVI 13147 kb)

Supplementary Video 2

Sample B: montage of STEM-HAADF images upon heating. (AVI 16477 kb)

Supplementary Video 3

Sample C: Montage of STEM-HAADF images upon heating. (AVI 30350 kb)

Supplementary Video 4

Sample D: montage of STEM-HAADF images upon heating. (AVI 26096 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Divitini, G., Cacovich, S., Matteocci, F. et al. In situ observation of heat-induced degradation of perovskite solar cells. Nat Energy 1, 15012 (2016). https://doi.org/10.1038/nenergy.2015.12

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing