Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: polymorphisms of androgen regulatory genes in the development of prostate cancer

Abstract

Androgens are of primary importance in the etiology of prostate cancer, and binding of the androgen dihydrotestosterone to the androgen receptor is thought to stimulate prostate growth. It has been proposed that polymorphisms within key androgen regulatory genes may contribute to an individual's risk of developing prostate cancer. Attributing single polymorphisms to complex, late-onset, chronic diseases such as prostate cancer is probably not feasible, but identification of genes that increase risk will contribute to larger-scale multigenic risk assessment. Here, we review the current status of our knowledge of associations between important androgen regulatory gene polymorphisms and prostate cancer risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the important regions of the androgen receptor.
Figure 2: Simplified pathway of human testosterone biosynthesis.

Similar content being viewed by others

References

  1. Jemal A et al. (2004) Cancer statistics, 2004. CA Cancer J Clin 54: 8–29

    Article  Google Scholar 

  2. Gelmann EP (2002) Molecular biology of the androgen receptor. J Clin Oncol 20: 3001–3015

    Article  CAS  Google Scholar 

  3. Irvine RA et al. (1995) The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 55: 1937–1940

    CAS  PubMed  Google Scholar 

  4. Mhatre AN et al. (1993) Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat Genet 5: 184–188; erratum Nat Genet 6: 214

    Article  CAS  Google Scholar 

  5. Chamberlain NL et al. (1994) The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 22: 3181–3186

    Article  CAS  Google Scholar 

  6. Novelli G et al. (2004) Pharmacogenetics of human androgens and prostate cancer—an update. Pharmacogenomics 5: 283–294

    Article  CAS  Google Scholar 

  7. Koivisto P et al. (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57: 314–319

    CAS  PubMed  Google Scholar 

  8. Marcelli M et al. (2000) Androgen receptor mutations in prostate cancer. Cancer Res 60: 944–949

    CAS  PubMed  Google Scholar 

  9. Taplin ME et al. (2003) Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 21: 2673–2678

    Article  CAS  Google Scholar 

  10. Gottlieb B et al. (2004) The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 23: 527–533; erratum Hum Mutat 24: 102

    Article  CAS  Google Scholar 

  11. Montgomery JS et al. (2001) The androgen receptor gene and its influence on the development and progression of prostate cancer. J Pathol 195: 138–146

    Article  CAS  Google Scholar 

  12. Mononen N et al. (2000) Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 60: 6479–6481

    CAS  PubMed  Google Scholar 

  13. Gruber SB et al. (2003) R726L androgen receptor mutation is uncommon in prostate cancer families in the United States. Prostate 54: 306–309

    Article  CAS  Google Scholar 

  14. Ross RK et al. (1998) Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res 58: 4497–4504

    CAS  PubMed  Google Scholar 

  15. Taplin ME et al. (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332: 1393–1398

    Article  CAS  Google Scholar 

  16. Taplin ME et al. (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59: 2511–2515

    CAS  PubMed  Google Scholar 

  17. Feldman BJ and Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45

    Article  CAS  Google Scholar 

  18. James AJ et al. (2002) A novel androgen receptor mutant, A748T, exhibits hormone concentration-dependent defects in nuclear accumulation and activity despite normal hormone-binding affinity. Mol Endocrinol 16: 2692–2705

    Article  CAS  Google Scholar 

  19. Matias PM et al. (2000) Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 275: 26164–26171

    Article  CAS  Google Scholar 

  20. Ntais C et al. (2003) Association of the CYP17 gene polymorphism with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 12: 120–126

    CAS  PubMed  Google Scholar 

  21. Habuchi T et al. (2000) Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect. Cancer Res 60: 5710–5713

    CAS  PubMed  Google Scholar 

  22. Wadelius M et al. (1999) Prostate cancer associated with CYP17 genotype. Pharmacogenetics 9: 635–639

    CAS  PubMed  Google Scholar 

  23. Latil AG et al. (2001) Prostate carcinoma risk and allelic variants of genes involved in androgen biosynthesis and metabolism pathways. Cancer 92: 1130–1137

    Article  CAS  Google Scholar 

  24. Madigan MP et al. (2003) CYP17 polymorphisms in relation to risks of prostate cancer and benign prostatic hyperplasia: a population-based study in China. Int J Cancer 107: 271–275

    Article  CAS  Google Scholar 

  25. Chang BL et al. (2003) Polymorphisms in the CYP1B1 gene are associated with increased risk of prostate cancer. Br J Cancer 89: 1524–1529

    Article  CAS  Google Scholar 

  26. Ntais C et al. (2003) SRD5A2 gene polymorphisms and the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 12: 618–624

    CAS  PubMed  Google Scholar 

  27. Shimada T et al. (1999) Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20: 1607–1613

    Article  CAS  Google Scholar 

  28. Tang YM et al. (2000) Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans, Caucasians and Chinese; oestradiol hydroxylase activity; and distribution in prostate cancer cases and controls. Pharmacogenetics 10: 761–766

    Article  CAS  Google Scholar 

  29. Tanaka Y et al. (2002) Polymorphisms of the CYP1B1 gene have higher risk for prostate cancer. Biochem Biophys Res Commun 296: 820–826

    Article  CAS  Google Scholar 

  30. Waxman DJ et al. (1988) Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys 263: 424–436

    Article  CAS  Google Scholar 

  31. Kleinbloesem CH et al. (1984) Variability in nifedipine pharmacokinetics and dynamics: a new oxidation polymorphism in man. Biochem Pharmacol 33: 3721–3724

    Article  CAS  Google Scholar 

  32. Rebbeck TR et al. (1998) Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 90: 1225–1229; erratum J Natl Cancer Inst 91: 1082

    Article  CAS  Google Scholar 

  33. Ball SE et al. (1999) Population distribution and effects on drug metabolism of a genetic variant in the 5′ promoter region of CYP3A4. Clin Pharmacol Ther 66: 288–294

    Article  CAS  Google Scholar 

  34. Kittles RA et al. (2002) CYP3A4-V and prostate cancer in African Americans: causal or confounding association because of population stratification? Hum Genet 110: 553–560

    Article  Google Scholar 

  35. Zeigler-Johnson C et al. (2004) CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res 64: 8461–8467

    Article  CAS  Google Scholar 

  36. Nam RK et al. (2003) Comprehensive assessment of candidate genes and serological markers for the detection of prostate cancer. Cancer Epidemiol Biomarkers Prev 12: 1429–1437

    CAS  PubMed  Google Scholar 

  37. Gsur A et al. (2004) Genetic polymorphisms and prostate cancer risk. World J Urol 21: 414–423

    Article  CAS  Google Scholar 

  38. Wojnowski L et al. (2002) Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 94: 630–631; author reply 631–632

    Article  Google Scholar 

  39. Plummer SJ et al. (2003) CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 12: 928–932

    CAS  PubMed  Google Scholar 

  40. Cicek MS et al. (2004) Association of prostate cancer risk and aggressiveness to androgen pathway genes: SRD5A2, CYP17, and the AR. Prostate 59: 69–76

    Article  CAS  Google Scholar 

  41. Soderstrom T et al. (2002) 5 alpha-reductase 2 polymorphisms as risk factors in prostate cancer. Pharmacogenetics 12: 307–312

    Article  Google Scholar 

  42. Shibata A et al. (2002) Polymorphisms in the androgen receptor and type II 5 alpha-reductase genes and prostate cancer prognosis. Prostate 52: 269–278

    Article  CAS  Google Scholar 

  43. Nam RK et al. (2001) V89L polymorphism of type-2, 5-alpha reductase enzyme gene predicts prostate cancer presence and progression. Urology 57: 199–204

    Article  CAS  Google Scholar 

  44. Makridakis NM et al. (1999) Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 354: 975–978

    Article  CAS  Google Scholar 

  45. Mononen N et al. (2001) A missense substitution A49T in the steroid 5-alpha-reductase gene (SRD5A2) is not associated with prostate cancer in Finland. Br J Cancer 84: 1344–1347

    Article  CAS  Google Scholar 

  46. Makridakis NM et al. (2000) Biochemical and pharmacogenetic dissection of human steroid 5 alpha-reductase type II. Pharmacogenetics 10: 407–413

    Article  CAS  Google Scholar 

  47. Chang BL et al. (2002) Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Res 62: 1784–1789

    CAS  PubMed  Google Scholar 

  48. Devgan SA et al. (1997) Genetic variation of 3 beta-hydroxysteroid dehydrogenase type II in three racial/ethnic groups: implications for prostate cancer risk. Prostate 33: 9–12

    Article  CAS  Google Scholar 

  49. Rheaume E et al. (1995) Identification and characterization of the G15D mutation found in a male patient with 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) deficiency: alteration of the putative NAD-binding domain of type II 3 beta-HSD. Biochemistry 34: 2893–2900

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D Figg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Chau, C., Price, D. et al. Mechanisms of Disease: polymorphisms of androgen regulatory genes in the development of prostate cancer. Nat Rev Urol 2, 101–107 (2005). https://doi.org/10.1038/ncpuro0091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpuro0091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing