In silico cancer modeling: is it ready for prime time?

Abstract

At the dawn of the era of personalized, systems-driven medicine, computational or in silico modeling and the simulation of disease processes is becoming increasingly important for hypothesis generation and data integration in both experiments and clinics alike. Arguably, the use of these techniques is nowhere more visible than in oncology. To illustrate the field's vast potential, as well as its current limitations, we briefly review selected studies on modeling malignant brain tumors. Implications for clinical practice, and for clinical trial design and outcome prediction, are also discussed.

Key Points

  • In generating experimentally testable hypotheses and facilitating multimodality data integration, in silico modeling is a driving force behind cancer systems biology

  • As exemplified by reviewing selected works on malignant brain tumors, practical applications for computational and mathematical cancer modeling reach from simulating aspects of tumor initiation and progression to modeling of treatment effect

  • In silico modeling is a tool geared to aiding experimental researchers and physicians in investigating the complex processes involved in tumorigenesis, thus supporting innovative discovery research and accelerating the identification of promising targets

  • Although there is no single simulator platform that fits all needs, discrete–continuum (hybrid) modeling, especially agent-based approaches, is particularly promising in integrating molecular, microscopic and macroscopic oncology data and in analyzing processes across scales in space and time

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Simulation snapshot depicting an advanced version of a model that predicts a tumor progression path.
Figure 2: Schematic displaying a simplified EGFR gene–protein interaction network within the three-compartment sub-cellular environment.

References

  1. 1

    Liu ET et al. (2006) In the pursuit of complexity: systems medicine in cancer biology. Cancer Cell 9: 245–247

    CAS  Article  Google Scholar 

  2. 2

    Kitano H (2002) Computational systems biology. Nature 420: 206–210

    CAS  Article  Google Scholar 

  3. 3

    Hornberg JJ et al. (2006) Cancer: a systems biology disease. Biosystems 83: 81–90

    CAS  Article  Google Scholar 

  4. 4

    Coffey DS (1998) Self-organization, complexity and chaos: the new biology for medicine. Nat Med 4: 882–885

    CAS  Article  Google Scholar 

  5. 5

    Ahn AC et al. (2006) The clinical applications of a systems approach. PLoS Med 3: e209

    Article  Google Scholar 

  6. 6

    The Integrative Cancer Biology Program [http://icbp.nci.nih.gov/]

  7. 7

    Anderson AR et al. (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127: 905–915

    CAS  Article  Google Scholar 

  8. 8

    Axelrod R et al. (2006) Evolution of cooperation among tumor cells. Proc Natl Acad Sci USA 103: 13474–13479

    CAS  Article  Google Scholar 

  9. 9

    Gatenby RA and Vincent TL (2003) An evolutionary model of carcinogenesis. Cancer Res 63: 6212–6220

    CAS  PubMed  Google Scholar 

  10. 10

    Mansury Y et al. (2006) Evolutionary game theory in an agent-based brain tumor model: exploring the 'Genotype-Phenotype' link. J Theor Biol 238: 146–156

    Article  Google Scholar 

  11. 11

    Guiot C et al. (2003) Does tumor growth follow a “universal law”. J Theor Biol 225: 147–151

    Article  Google Scholar 

  12. 12

    Guiot C et al. (2006) The dynamic evolution of the power exponent in a universal growth model of tumors. J Theor Biol 240: 459–463

    Article  Google Scholar 

  13. 13

    Baish JW and Jain RK (2000) Fractals and cancer. Cancer Res 60: 3683–3688

    CAS  PubMed  Google Scholar 

  14. 14

    Cross SS (1997) Fractals in pathology. J Pathol 182: 1–8

    CAS  Article  Google Scholar 

  15. 15

    Norton L (2005) Conceptual and practical implications of breast tissue geometry: toward a more effective, less toxic therapy. Oncologist 10: 370–381

    CAS  Article  Google Scholar 

  16. 16

    Goh KI et al. (2007) The human disease network. Proc Natl Acad Sci USA 104: 8685–8690

    CAS  Article  Google Scholar 

  17. 17

    Marusic M et al. (1994) Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif 27: 73–94

    CAS  Article  Google Scholar 

  18. 18

    Vaidya VG and Alexandro FJ Jr (1982) Evaluation of some mathematical models for tumor growth. Int J Biomed Comput 13: 19–36

    CAS  Article  Google Scholar 

  19. 19

    Alarcon T et al. (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225: 257–274

    CAS  Article  Google Scholar 

  20. 20

    Bauer AL et al. (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92: 3105–3121

    CAS  Article  Google Scholar 

  21. 21

    McDougall SR et al. (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241: 564–589

    Article  Google Scholar 

  22. 22

    Plank MJ and Sleeman BD (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66: 1785–1819

    CAS  Article  Google Scholar 

  23. 23

    Sole RV and Deisboeck TS (2004) An error catastrophe in cancer. J Theor Biol 228: 47–54

    Article  Google Scholar 

  24. 24

    Spencer SL et al. (2006) Modeling somatic evolution in tumorigenesis. PLoS Comput Biol 2: e108

    Article  Google Scholar 

  25. 25

    Castiglione F et al. (2005) Computational modeling of the immune response to tumor antigens. J Theor Biol 237: 390–400

    CAS  Article  Google Scholar 

  26. 26

    Wu JT et al. (2004) Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response. Bull Math Biol 66: 605–625

    Article  Google Scholar 

  27. 27

    Sanga S et al. (2007) Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. Neuroimage 37 (Suppl 1): S120–S134

    Article  Google Scholar 

  28. 28

    Greenspan HP (1972) Models for the growth of a solid tumor by diffusion. Stud Appl Math: 317–340

    Article  Google Scholar 

  29. 29

    Greenspan HP (1976) On the growth and stability of cell cultures and solid tumors. J Theor Biol 56: 229-242

    CAS  Article  Google Scholar 

  30. 30

    Chaplain MA and Sleeman BD (1993) Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory. J Math Biol 31: 431–473

    CAS  Article  Google Scholar 

  31. 31

    Zheng X et al. (2005) Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull Math Biol 67: 211–259

    CAS  Article  Google Scholar 

  32. 32

    Khain E and Sander LM (2006) Dynamics and pattern formation in invasive tumor growth. Phys Rev Lett 96: 188103

    Article  Google Scholar 

  33. 33

    Frieboes HB et al. (2006) An integrated computational/experimental model of tumor invasion. Cancer Res 66: 1597–1604

    CAS  Article  Google Scholar 

  34. 34

    Wasserman R and Acharya R (1996) A patient-specific in vivo tumor model. Math Biosci 136: 111–140

    CAS  Article  Google Scholar 

  35. 35

    Clatz O et al. (2005) Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24: 1334–1346

    Article  Google Scholar 

  36. 36

    Konukoglu E et al. (2007) A recursive anisotropic fast marching approach to reaction diffusion equation: application to tumor growth modeling. Inf Process Med Imaging 20: 687–699

    Article  Google Scholar 

  37. 37

    Zienkiewicz OC (1977) The Finite Element Method, edn 3. London: NCGraw-Hill

    Google Scholar 

  38. 38

    Burgess PK et al. (1997) The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol 56: 704–713

    CAS  Article  Google Scholar 

  39. 39

    Cruywagen GC et al. (1995) The modeling of diffusive tumors. J Biol System 3: 937–945

    Article  Google Scholar 

  40. 40

    Tracqui P et al. (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28: 17–31

    CAS  Article  Google Scholar 

  41. 41

    Woodward DE et al. (1996) A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif 29: 269–288

    CAS  Article  Google Scholar 

  42. 42

    Burger PC et al. (1994) Tumors of the Central Nervous Systems, edn 3. Washington, DC: Armed Forces Institute Pathology

    Google Scholar 

  43. 43

    Kleihues P et al. (1993) The new WHO classification of brain tumours. Brain Pathol 3: 255–268

    CAS  Article  Google Scholar 

  44. 44

    Kleihues P et al. (1993) Histological Typing of Tumors of the Central Nervous System, edn 2. Berlin: Springer

    Google Scholar 

  45. 45

    Swanson KR et al. (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33: 317–329

    CAS  Article  Google Scholar 

  46. 46

    Swanson KR et al. (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86: 14–18

    CAS  Article  Google Scholar 

  47. 47

    Orme ME and Chaplain MA (1997) Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J Math Appl Med Biol 14: 189–205

    CAS  Article  Google Scholar 

  48. 48

    Kansal AR et al. (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203: 367–382

    CAS  Article  Google Scholar 

  49. 49

    Kansal AR et al. (2000) Cellular automaton of idealized brain tumor growth dynamics. Biosystems 55: 119–127

    CAS  Article  Google Scholar 

  50. 50

    Wolfram S (1994) Cellular Automata and Complexity: Collected Papers. Reading, MA: Addison-Wesley

    Google Scholar 

  51. 51

    Deisboeck TS et al. (2001) Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif 34: 115–134

    CAS  Article  Google Scholar 

  52. 52

    Mansury Y and Deisboeck TS (2003) The impact of “search precision” in an agent-based tumor model. J Theor Biol 224: 325–337

    Article  Google Scholar 

  53. 53

    Mansury Y et al. (2002) Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J Theor Biol 219: 343–370

    Article  Google Scholar 

  54. 54

    Athale C et al. (2005) Simulating the impact of a molecular 'decision-process' on cellular phenotype and multicellular patterns in brain tumors. J Theor Biol 233: 469–481

    CAS  Article  Google Scholar 

  55. 55

    Athale CA and Deisboeck TS (2006) The effects of EGF-receptor density on multiscale tumor growth patterns. J Theor Biol 238: 771–779

    CAS  Article  Google Scholar 

  56. 56

    Ohgaki H and Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170: 1445–1453

    CAS  Article  Google Scholar 

  57. 57

    Mellinghoff IK et al. (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353: 2012–2024

    CAS  Article  Google Scholar 

  58. 58

    Zhang L et al. (2007) Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 244: 96–107

    CAS  Article  Google Scholar 

  59. 59

    Schoeberl B et al. (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20: 370–375

    Article  Google Scholar 

  60. 60

    Alarcon T et al. (2004) A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J Theor Biol 229: 395–411

    CAS  Article  Google Scholar 

  61. 61

    Frieboes HB et al. (2007) Computer simulation of glioma growth and morphology. Neuroimage 37 (Suppl 1): S59–S70

    Article  Google Scholar 

  62. 62

    Swanson KR et al. (2002) Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery. Acta Biotheor 50: 223–237

    Article  Google Scholar 

  63. 63

    Sanga S et al. (2006) Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev Anticancer Ther 6: 1361–1376

    CAS  Article  Google Scholar 

  64. 64

    Kirkby NF et al. (2007) A mathematical model of the treatment and survival of patients with high-grade brain tumours. J Theor Biol 245: 112–124

    Article  Google Scholar 

  65. 65

    Kirkby NF et al. (2007) Mathematical modelling of survival of patients with glioblastoma following radical and palliative radiotherapy. Clin Oncol (R Coll Radiol) 19: S35–S36

    Article  Google Scholar 

  66. 66

    Dionysiou DD et al. (2004) A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol 230: 1–20

    CAS  Article  Google Scholar 

  67. 67

    Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62: 679–694

    CAS  Article  Google Scholar 

  68. 68

    Stamatakos GS et al. (2006) A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme: studies on the effect of clonogenic cell density. Br J Radiol 79: 389–400

    CAS  Article  Google Scholar 

  69. 69

    Araujo RP et al. (2005) A mathematical model of combination therapy using the EGFR signaling network. Biosystems 80: 57–69

    CAS  Article  Google Scholar 

  70. 70

    Hu L et al. (2007) Computational modeling to predict effect of treatment schedule on drug delivery to prostate in humans. Clin Cancer Res 13: 1278–1287

    CAS  Article  Google Scholar 

  71. 71

    Jaffer FA and Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293: 855–862

    CAS  Article  Google Scholar 

  72. 72

    Center for the Development of a Virtual Tumor [https://www.cvit.org]

  73. 73

    Deisboeck TS et al. (2007) Advancing cancer systems biology: introducing the Center for the Development of a Virtual Tumor, CViT. Cancer Informatics: 1–8

  74. 74

    Zhang L et al. (2008) Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math Comput Model (in press) [10.1016/j.mcm.2008.05.011]

Download references

Acknowledgements

This work has been supported, in part, by NIH grants CA 085139 and CA 113004 (CViT; https://www.cvit.org) and by the Harvard-MIT (HST) Athinoula A Martinos Center for Biomedical Imaging and the Department of Radiology at Massachusetts General Hospital.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas S Deisboeck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deisboeck, T., Zhang, L., Yoon, J. et al. In silico cancer modeling: is it ready for prime time?. Nat Rev Clin Oncol 6, 34–42 (2009). https://doi.org/10.1038/ncponc1237

Download citation

Further reading