Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: image-guided robotic radiosurgery—a new approach for noninvasive ablation of spinal lesions

Abstract

The need for an effective noninvasive tool to ablate spinal lesions reflects the limitations of traditional surgical and radiotherapeutic approaches. Open surgery is invasive and carries a risk of neurological injury and vertebral column dysfunction. Conventional radiotherapy often has poor clinical efficacy and a risk of neurologic complications. Spinal radiosurgery has been developed to overcome these limitations. This technique consists of precise delivery of high-dose radiation to a spinal target. To spare the delicate and radiation-sensitive spinal cord and to avoid potentially devastating neurological complications, it is essential that the radiation dose decreases rapidly outside of the target. This is accomplished by use of advanced, image-guidance technology, treatment planning software, and robotics. Preliminary data indicate that this approach can achieve high rates of tumor control of spinal and paraspinal lesions and durable reduction of associated vertebral pain without neurological complications. Although spinal radiosurgery is not yet widely practiced, the benefits of this new therapeutic approach are likely to encourage its widespread adoption in coming years.

Key Points

  • The accurate, tightly focused delivery of radiation to spinal lesions is possible by frameless robotic radiosurgical technologies such as CyberKnife® and Novalis® Shaped Beam

  • Image guidance is the key to spinal radiosurgery; X-ray images are registered to images derived from preoperative CTs, and the computations required to align the images provide the coordinates for lesion targeting

  • A range of pathologies have been treated with spinal radiosurgery, including metastatic lesions, primary malignant and benign lesions, and arteriovenous malformations

  • Spinal radiosurgery provides durable pain relief and local tumor control while maintaining physical and mental quality of life

  • Spinal radiosurgery is associated with a low rate of complications; no neurological complications were observed in the largest series to date (500 lesions)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CyberKnife® system.
Figure 2: Treatment planning (coronal view) and 3-dimensional view showing the planned penetration trajectories for CyberKnife® treatment of a thoracic metastatic lesion (T2–T4).
Figure 3: Novalis® Shaped Beam Surgery system for extracranial treatments.
Figure 4: On-screen images seen during an Xsight® fiducial-free spine tracking treatment with the CyberKnife®.

Similar content being viewed by others

References

  1. Fuentes S et al. (2006) Brainstem metastases: management using gamma knife radiosurgery. Neurosurgery 58: 37–42

    Article  PubMed  Google Scholar 

  2. Hadjipanayis CG et al. (2001) Stereotactic radiosurgery for motor cortex region arteriovenous malformations. Neurosurgery 48: 70–76

    CAS  PubMed  Google Scholar 

  3. Hasegawa T et al. (2005) Stereotactic radiosurgery for vestibular schwannomas: analysis of 317 patients followed more than 5 years. Neurosurgery 57: 257–265

    Article  PubMed  Google Scholar 

  4. Heppner PA et al. (2005) Gamma knife surgery for low-grade gliomas. Neurosurgery 57: 1132–1139

    Article  PubMed  Google Scholar 

  5. Kobayashi T et al. (2005) Long-term results of gamma knife surgery for the treatment of craniopharyngioma in 98 consecutive cases. J Neurosurg 103: 482–488

    PubMed  Google Scholar 

  6. Kondziolka D et al. (2002) Stereotactic radiosurgery for the treatment of trigeminal neuralgia. Clin J Pain 18: 42–47

    Article  PubMed  Google Scholar 

  7. Laws ER et al. (2004) Stereotactic radiosurgery for pituitary adenomas: a review of the literature. J Neurooncol 69: 257–272

    Article  PubMed  Google Scholar 

  8. Lunsford LD et al. (1991) Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg 75: 512–524

    Article  CAS  PubMed  Google Scholar 

  9. Lunsford LD et al. (2005) Radiosurgery of vestibular schwannomas: summary of experience in 829 cases. J Neurosurg 102 (Suppl): S195–S199

    Article  Google Scholar 

  10. McDermott MW et al. (2005) Radiosurgery in metastatic brain cancer. Neurosurgery 57 (Suppl): S45–S53

    PubMed  Google Scholar 

  11. Pollock BE et al. (2005) Results of stereotactic radiosurgery for patients with imaging defined cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 62: 1427–1431

    Article  PubMed  Google Scholar 

  12. Regis J et al. (2004) Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Acta Neurochir Suppl 91: 33–50

    CAS  PubMed  Google Scholar 

  13. Regis J et al. (2004) Gamma knife surgery in mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia 45: 504–515

    Article  PubMed  Google Scholar 

  14. Sheehan JP et al. (2005) Stereotactic radiosurgery for pituitary adenomas: an intermediate review of its safety, efficacy, and role in the neurosurgical treatment armamentarium. J Neurosurg 102: 678–691

    Article  PubMed  Google Scholar 

  15. Yamamoto Y et al. (1995) Interim report on the radiosurgical treatment of cerebral arteriovenous malformations: the influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg 83: 832–837

    Article  CAS  PubMed  Google Scholar 

  16. Ryu SI et al. (2001) Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 49: 838–846

    CAS  PubMed  Google Scholar 

  17. Bhatnagar AK et al. (2005) CyberKnife frameless radiosurgery for the treatment of extracranial benign tumors. Technol Cancer Res Treat 4: 571–576

    Article  PubMed  Google Scholar 

  18. Gerszten PC et al. (2005) Stereotactic radiosurgery for spinal metastases from renal cell carcinoma. J Neurosurg Spine 3: 288–295

    Article  PubMed  Google Scholar 

  19. Gerszten PC et al. (2006) Radiosurgery for the treatment of spinal melanoma metastases. Stereotact Funct Neurosurg 83: 213–221

    Article  Google Scholar 

  20. Gerszten PC et al. (2005) Single-fraction radiosurgery for the treatment of spinal breast metastases. Cancer 104: 2244–2254

    Article  PubMed  Google Scholar 

  21. Gerszten PC et al. (2003) Evaluation of CyberKnife frameless real-time image-guided stereotactic radiosurgery for spinal lesions. Stereotact Funct Neurosurg 81: 84–89

    Article  PubMed  Google Scholar 

  22. Gerszten PC et al. (2003) CyberKnife frameless single-fraction stereotactic radiosurgery for benign tumors of the spine. Neurosurg Focus 14: e16

    Article  PubMed  Google Scholar 

  23. Gerszten PC et al. (2004) CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery 55: 89–98

    PubMed  Google Scholar 

  24. Gerszten PC et al. (2003) CyberKnife frameless single-fraction stereotactic radiosurgery for tumors of the sacrum. Neurosurg Focus 15: e7

    Article  PubMed  Google Scholar 

  25. Gerszten PC et al. (2005) Combination kyphoplasty and spinal radiosurgery: a new treatment paradigm for pathological fractures. J Neurosurg Spine 3: 296–301

    Article  PubMed  Google Scholar 

  26. Benzil DL et al. (2004) Safety and efficacy of stereotactic radiosurgery for tumors of the spine. J Neurosurg 101 (Suppl 3): S413–S418

    Article  Google Scholar 

  27. De Salles AA et al. (2004) Spinal lesions treated with Novalis shaped beam intensity-modulated radiosurgery and stereotactic radiotherapy. J Neurosurg 101 (Suppl 3): S435–S440

    Article  Google Scholar 

  28. Rock JP et al. (2006) Postoperative radiosurgery for malignant spinal tumors. Neurosurgery 58: 891–898

    Article  PubMed  Google Scholar 

  29. Rock JP et al. (2004) Novalis radiosurgery for metastatic spine tumors. Neurosurg Clin N Am 15: 503–509

    Article  PubMed  Google Scholar 

  30. Ryu S et al. (2003) Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer 97: 2013–2018

    Article  PubMed  Google Scholar 

  31. Bilsky MH et al. (2004) Intensity-modulated stereotactic radiotherapy of paraspinal tumors: a preliminary report. Neurosurgery 54: 823–830

    Article  PubMed  Google Scholar 

  32. Hamilton AJ et al. (1995) Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery 36: 311–319

    Article  CAS  PubMed  Google Scholar 

  33. Yamada Y et al. (2005) Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Radiat Oncol Biol Phys 62: 53–61

    Article  PubMed  Google Scholar 

  34. Yamada Y et al. (2006) Image-guided intensity-modulated radiation therapy of spine tumors. Curr Neurol Neurosci Rep 6: 207–211

    Article  PubMed  Google Scholar 

  35. Gerszten PC et al. (2007) Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine 32: 193–199

    Article  PubMed  Google Scholar 

  36. Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102: 316–319

    CAS  PubMed  Google Scholar 

  37. Colombo F et al. (1989) Linear accelerator radiosurgery of cerebral arteriovenous malformations. Neurosurgery 24: 833–840

    Article  CAS  PubMed  Google Scholar 

  38. Colombo F et al. (1994) Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 34: 14–20

    CAS  PubMed  Google Scholar 

  39. Flickinger JC et al. (1996) A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 36: 873–879

    Article  CAS  PubMed  Google Scholar 

  40. Friedman WA et al. (2003) Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery 52: 296–307

    Article  PubMed  Google Scholar 

  41. Ulfarsson E et al. (2002) Gamma knife radiosurgery for craniopharyngiomas: long-term results in the first Swedish patients. J Neurosurg 97: 613–622

    Article  PubMed  Google Scholar 

  42. Abramson N et al. (1976) Short-course radiation therapy in the treatment of head and neck tumors. Radiology 118: 175–178

    Article  CAS  PubMed  Google Scholar 

  43. Fitzgerald RH Jr et al. (1982) Chronic radiation myelitis. Radiology 144: 609–612

    Article  PubMed  Google Scholar 

  44. Madden FJ et al. (1979) Split course radiation in inoperable carcinoma of the bronchus. Eur J Cancer 15: 1175–1177

    Article  CAS  PubMed  Google Scholar 

  45. Guthrie RT et al. (1973) Comparative analysis of two regimens of split course radiation in carcinoma of the lung. Am J Roentgenol Radium Ther Nucl Med 117: 605–608

    Article  CAS  PubMed  Google Scholar 

  46. Schultheiss TE et al. (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31: 1093–1112

    Article  CAS  PubMed  Google Scholar 

  47. Adler JR Jr et al. (1997) The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69: 124–128

    Article  PubMed  Google Scholar 

  48. Adler JR et al. (1996) Preliminary clinical experience with the CyberKnife: image-guided stereotactic radiosurgery. In Radiosurgery 1995, 316–326 (Eds Alexander III E, et al.) Basel, Switzerland: Karger

    Google Scholar 

  49. Yu C et al. (2004) An anthropomorphic phantom study of the accuracy of Cyberknife spinal radiosurgery. Neurosurgery 55: 1138–1149

    Article  PubMed  Google Scholar 

  50. Ho AK et al. (2007) A study of the accuracy of Cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 60: 147–156

    Google Scholar 

  51. Muacevic A et al. (2006) Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine 5: 303–312

    Article  PubMed  Google Scholar 

  52. Yan H et al. (2003) A phantom study on the positioning accuracy of the Novalis Body system. Med Phys 30: 3052–3060

    Article  PubMed  Google Scholar 

  53. Mahan SL et al. (2005) Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis. Int J Radiat Oncol Biol Phys 63: 1576–1583

    Article  PubMed  Google Scholar 

  54. Yu C et al. (2003) Dosimetric comparison of CyberKnife with other radiosurgical modalities for an ellipsoidal target. Neurosurgery 53: 1155–1162

    Article  PubMed  Google Scholar 

  55. Murphy MJ et al. (2000) Image-guided radiosurgery for the spine and pancreas. Comput Aided Surg 5: 278–288

    Article  CAS  PubMed  Google Scholar 

  56. Shiu AS et al. (2003) Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys 57: 605–613

    Article  PubMed  Google Scholar 

  57. Yenice KM et al. (2003) CT image-guided intensity-modulated therapy for paraspinal tumors using stereotactic immobilization. Int J Radiat Oncol Biol Phys 55: 583–593

    Article  PubMed  Google Scholar 

  58. Sinclair J et al. (2006) Multisession CyberKnife radiosurgery for intramedullary spinal cord arteriovenous malformations. Neurosurgery 58: 1081–1089

    Article  PubMed  Google Scholar 

  59. Friedman WA et al. (1996) The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg 84: 912–919

    Article  CAS  PubMed  Google Scholar 

  60. Maruyama K et al. (2005) The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med 352: 146–153

    Article  CAS  PubMed  Google Scholar 

  61. Maruyama K et al. (2004) Stereotactic radiosurgery for brainstem arteriovenous malformations: factors affecting outcome. J Neurosurg 100: 407–413

    Article  PubMed  Google Scholar 

  62. Dodd RL et al. (2006) CyberKnife radiosurgery for benign intradural extramedullary spinal tumors. Neurosurgery 58: 674–685

    Article  PubMed  Google Scholar 

  63. Jacobs WB et al. (2001) Evaluation and treatment of spinal metastases: an overview. Neurosurg Focus 11: e10

    Article  CAS  PubMed  Google Scholar 

  64. Helweg-Larsen S (1996) Clinical outcome in metastatic spinal cord compression: a prospective study of 153 patients. Acta Neurol Scand 94: 269–275

    Article  CAS  PubMed  Google Scholar 

  65. Chang EL et al. (2004) Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 59: 1288–1294

    Article  PubMed  Google Scholar 

  66. Degen JW et al. (2005) CyberKnife stereotactic radiosurgical treatment of spinal tumors for pain control and quality of life. J Neurosurg Spine 2: 540–549

    Article  PubMed  Google Scholar 

  67. Milker-Zabel S et al. (2003) Clinical results of retreatment of vertebral bone metastases by stereotactic conformal radiotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 55: 162–167

    Article  PubMed  Google Scholar 

  68. Gerszten PC et al. (2006) Radiosurgery for the treatment of spinal lung metastases. Cancer 107: 2653–2661

    Article  PubMed  Google Scholar 

  69. Jin JY et al. (2007) Technical and clinical experience with spine radiosurgery: a new technology for management of localized spine metastases. Technol Cancer Res Treat 6: 127–133

    Article  PubMed  Google Scholar 

  70. Ryu S et al. (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109: 628–636

    Article  PubMed  Google Scholar 

  71. Ryu S et al. (2004) Patterns of failure after single-dose radiosurgery for spinal metastasis. J Neurosurg 101 (Suppl 3): 402–405

    Article  PubMed  Google Scholar 

  72. Timmerman RD et al. (2006) Stereotactic body radiation therapy: a treatment in need of basic biological research. Cancer J 12: 19–20

    Article  PubMed  Google Scholar 

  73. Timmerman R et al. (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24: 4833–4839

    Article  PubMed  Google Scholar 

  74. Blomgren H et al. (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator: clinical experience of the first thirty-one patients. Acta Oncol 34: 861–870

    Article  CAS  PubMed  Google Scholar 

  75. Le QT et al. (2006) Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol 1: 802–809

    Article  PubMed  Google Scholar 

  76. Choi JY (2005) Experimental treatment of hepatocellular carcinoma. Korean J Gastroenterol 45: 271–276

    PubMed  Google Scholar 

  77. Kavanagh BD et al. (2006) Interim analysis of a prospective phase I/II trial of SBRT for liver metastases. Acta Oncol 45: 848–855

    Article  PubMed  Google Scholar 

  78. Koong AC et al. (2004) Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 58: 1017–1021

    Article  PubMed  Google Scholar 

  79. Hara W et al. (2006) Hypofractionated stereotactic radiotherapy for prostate cancer: early results. Int J Radiat Oncol Biol Phys 66 (Suppl): S324–S325

    Article  Google Scholar 

  80. Madsen BL et al. (2007) Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys 67: 1099–1105

    Article  PubMed  Google Scholar 

  81. Gerszten PC et al. (2002) Feasibility of frameless single-fraction stereotactic radiosurgery for spinal lesions. Neurosurg Focus 13: e2

    Article  PubMed  Google Scholar 

  82. Rock J et al. (2002) Radiosurgical treatment for Ewing's sarcoma of the lumbar spine: case report. Spine 27: E471–E475

    Article  PubMed  Google Scholar 

  83. Ryu SI et al. (2003) Stereotactic radiosurgery for hemangiomas and ependymomas of the spinal cord. Neurosurg Focus 15: e10

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor G Cantore for his unwavering support and Dr D Schaal for his invaluable editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantaleo Romanelli.

Ethics declarations

Competing interests

P Romanelli has worked occasionally as a consultant for Accuray Incorporated during the past 3 years. JR Adler Jr is a shareholder and is on the Board of Directors of Accuray Incorporated.

Supplementary information

Supplementary Table 1

Studies of high-dose stereotactic radiosurgery for spinal lesions. (DOC 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanelli, P., Adler, J. Technology Insight: image-guided robotic radiosurgery—a new approach for noninvasive ablation of spinal lesions. Nat Rev Clin Oncol 5, 405–414 (2008). https://doi.org/10.1038/ncponc1131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing