Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemoradiotherapy for localized esophageal cancer: regimen selection and molecular mechanisms of radiosensitization

Abstract

Concurrent chemoradiotherapy administered either before surgery or as definitive treatment has a central role in the multimodality treatment of locally advanced esophageal cancer. Initial studies of this combined-modality regimen were based on models of squamous-cell cancers from other primary sites; this approach progressed from use of bleomycin or fluorouracil plus cisplatin concurrent with radiation in early trials, to the integration of taxanes, camptothecins and platinum analogs in recent trials. These trials demonstrated the tumoricidal effect of concurrent chemotherapy and radiotherapy and showed the survival advantages of this approach. Preoperative concurrent chemoradiation is used to downstage the tumor, ideally to a pathological complete response status in which there is no residual tumor in the resected primary and nodal tissues. A pathological complete response is associated with long-term survival but occurs in a minority (30%) of patients. While clinical trials have demonstrated an improvement in survival with concurrent chemoradiotherapy this effect is limited, as indicated by the plateau in survival beyond 5 years of approximately 30% or less. The recent clinical development of biologic, targeted therapies provides a new avenue for the study of chemoradiotherapy and an opportunity to increase long-term survival.

Key Points

  • Combined chemotherapy and radiotherapy yields enhanced tumor cell kill

  • The molecular mechanisms for this synergy are incompletely understood

  • Translation of the effect of chemoradiotherapy to clinical benefit has been demonstrated by multiple clinical trials

  • Efforts to intensify therapy using currently available agents have been unsuccessful and/or have resulted in unacceptable degrees of toxicity

  • Future studies will incorporate biologic, targeted therapies, with the goal of further improving survival

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approaches that use systemic agents to enhance the effects of radiation

Similar content being viewed by others

References

  1. Jemal A et al. (2005) Cancer statistics, 2005. CA Cancer J Clin 55: 10–30

    Article  PubMed  Google Scholar 

  2. Pera M et al. (2005) Epidemiology of esophageal adenocarcinoma. J Surg Oncol 92: 151–159

    Article  PubMed  Google Scholar 

  3. el-Serag HB (2002) The epidemic of esophageal adenocarcinoma. Gastroenterol Clin North Am 31: 421–440, viii

    Article  PubMed  Google Scholar 

  4. Arnott SJ et al. (1998) Preoperative radiotherapy in esophageal carcinoma: a meta-analysis using individual patient data (Oesophageal Cancer Collaborative Group). Int J Radiat Oncol Biol Phys 41: 579–583

    Article  CAS  PubMed  Google Scholar 

  5. Fok M et al. (1993) Postoperative radiotherapy for carcinoma of the esophagus: a prospective, randomized controlled study. Surgery 113: 138–147

    CAS  PubMed  Google Scholar 

  6. Kelsen DP et al. (1978) cis-Dichlorodiammineplatinum(II) and bleomycin in the treatment of esophageal carcinomas. Cancer Treat Rep 62: 1041–1046

    CAS  PubMed  Google Scholar 

  7. Coonley CJ et al. (1984) Cisplatin and bleomycin in the treatment of esophageal carcinoma: a final report. Cancer 54: 2351–2355

    Article  CAS  PubMed  Google Scholar 

  8. Kelsen D et al. (1983) Cisplatin, vindesine, and bleomycin chemotherapy of local-regional and advanced esophageal carcinoma. Am J Med 75: 645–652

    Article  CAS  PubMed  Google Scholar 

  9. Forastiere AA et al. (1987) Cisplatin, vinblastine, and mitoguazone chemotherapy for epidermoid and adenocarcinoma of the esophagus. J Clin Oncol 5: 1143–1149

    Article  CAS  PubMed  Google Scholar 

  10. Shields TW et al. (1984) Multimodality approach to treatment of carcinoma of the esophagus. Arch Surg 119: 558–562

    Article  CAS  PubMed  Google Scholar 

  11. Carey RW et al. (1986) Preoperative chemotherapy followed by surgery with possible postoperative radiotherapy in squamous cell carcinoma of the esophagus: evaluation of the chemotherapy component. J Clin Oncol 4: 697–701

    Article  CAS  PubMed  Google Scholar 

  12. Kelsen DP et al. (1998) Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med 339: 1979–1984

    Article  CAS  PubMed  Google Scholar 

  13. Steiger Z et al. (1981) Eradication and palliation of squamous cell carcinoma of the esophagus with chemotherapy, radiotherapy, and surgical therapy. J Thorac Cardiovasc Surg 82: 713–719

    CAS  PubMed  Google Scholar 

  14. Leichman L et al. (1984) Preoperative chemotherapy and radiation therapy for patients with cancer of the esophagus: a potentially curative approach. J Clin Oncol 2: 75–79

    Article  CAS  PubMed  Google Scholar 

  15. Leichman L et al. (1987) Nonoperative therapy for squamous-cell cancer of the esophagus. J Clin Oncol 5: 365–370

    Article  CAS  PubMed  Google Scholar 

  16. Herskovic A et al. (1992) Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 326: 1593–1598

    Article  CAS  PubMed  Google Scholar 

  17. Poplin E et al. (1987) Combined therapies for squamous-cell carcinoma of the esophagus, a Southwest Oncology Group Study (SWOG-8037). J Clin Oncol 5: 622–628

    Article  CAS  PubMed  Google Scholar 

  18. Cooper JS et al. (1999) Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA 281: 1623–1627

    Article  CAS  PubMed  Google Scholar 

  19. Fazekas J et al. (1987) Failure of misonidazole-sensitized radiotherapy to impact upon outcome among stage III-IV squamous cancers of the head and neck. Int J Radiat Oncol Biol Phys 13: 1155–1160

    Article  CAS  PubMed  Google Scholar 

  20. Jakobsson M et al. (1987) Misonidazole combined with radiotherapy in the treatment of non-small cell lung cancer: a randomized double-blind trial. Strahlenther Onkol 163: 90–93

    CAS  PubMed  Google Scholar 

  21. Lee DJ et al. (1995) Results of an RTOG phase III trial (RTOG 85-27) comparing radiotherapy plus etanidazole with radiotherapy alone for locally advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys 32: 567–576

    Article  CAS  PubMed  Google Scholar 

  22. Brown JM (2000) Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6: 157–162

    Article  CAS  PubMed  Google Scholar 

  23. Thomlinson RH (1973) Implications of reoxygenation. Br J Radiol 46: 73–74

    Article  CAS  PubMed  Google Scholar 

  24. Giaccia AJ (1996) Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6: 46–58

    Article  CAS  PubMed  Google Scholar 

  25. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14: 198–206

    Article  PubMed  Google Scholar 

  26. Keyes SR et al. (1985) Chemotherapeutic attack of hypoxic tumor cells by the bioreductive alkylating agent mitomycin C. Adv Enzyme Regul 23: 291–307

    Article  CAS  PubMed  Google Scholar 

  27. Gandara DR et al. (2002) Tirapazamine: prototype for a novel class of therapeutic agents targeting tumor hypoxia. Semin Oncol 29: 102–109

    Article  CAS  PubMed  Google Scholar 

  28. Kleinberg L et al. (2002) Survival of patients with newly diagnosed glioblastoma multiforme treated with RSR13 and radiotherapy: results of a phase II new approaches to brain tumor therapy CNS consortium safety and efficacy study. J Clin Oncol 20: 3149–3155

    Article  CAS  PubMed  Google Scholar 

  29. Terasima T and Tolmach LJ (1963) Variations in several responses of HeLa cells to x-irradiation during the division cycle. Biophys J 3: 11–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sinclair WK and Morton RA (1965) X-ray and ultraviolet sensitivity of synchronized chinese hamster cells at various stages of the cell cycle. Biophys J 97: 1–25

    Article  Google Scholar 

  31. Wilson GD (2004) Radiation and the cell cycle, revisited. Cancer Metastasis Rev 23: 209–225

    Article  CAS  PubMed  Google Scholar 

  32. Wilson GD et al. (2006) Biologic basis for combining drugs with radiation. Semin Radiat Oncol 16: 2–9

    Article  PubMed  Google Scholar 

  33. Withers HR et al. (1988) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27: 131–146

    Article  CAS  PubMed  Google Scholar 

  34. Ljungkvist AS et al. (2006) Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumor model. Radiat Res 165: 326–336

    Article  CAS  PubMed  Google Scholar 

  35. Rich TA et al. (2004) Four decades of continuing innovation with fluorouracil: current and future approaches to fluorouracil chemoradiation therapy. J Clin Oncol 22: 2214–2232

    Article  CAS  PubMed  Google Scholar 

  36. Peters GJ et al. (1995) Thymidylate synthase and drug resistance. Eur J Cancer 31A: 1299–1305

    Article  CAS  PubMed  Google Scholar 

  37. Berger SH and Hakala MT (1984) Relationship of dUMP and free FdUMP pools to inhibition of thymidylate synthase by 5-fluorouracil. Mol Pharmacol 25: 303–309

    CAS  PubMed  Google Scholar 

  38. Lawrence TS et al. (1996) Fluorodeoxyuridine-mediated cytotoxicity and radiosensitization require S phase progression. Int J Radiat Biol 70: 273–280

    Article  CAS  PubMed  Google Scholar 

  39. Heimburger DK et al. (1991) The effect of fluorodeoxyuridine on sublethal damage repair in human colon cancer cells. Int J Radiat Oncol Biol Phys 21: 983–987

    Article  CAS  PubMed  Google Scholar 

  40. Ingraham HA et al. (1986) DNA fragmentation and cytotoxicity from increased cellular deoxyuridylate. Biochemistry 25: 3225–3230

    Article  CAS  PubMed  Google Scholar 

  41. Yoshioka A et al. (1987) Deoxyribonucleoside triphosphate imbalance. 5-Fluorodeoxyuridine-induced DNA double strand breaks in mouse FM3A cells and the mechanism of cell death. J Biol Chem 262: 8235–8241

    CAS  PubMed  Google Scholar 

  42. Bruso CE et al. (1990) Fluorodeoxyuridine-induced radiosensitization and inhibition of DNA double strand break repair in human colon cancer cells. Int J Radiat Oncol Biol Phys 19: 1411–1417

    Article  CAS  PubMed  Google Scholar 

  43. Lawrence TS et al. (2003) The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol 13: 13–21

    Article  PubMed  Google Scholar 

  44. McGinn CJ et al. (1996) Radiosensitizing nucleosides. J Natl Cancer Inst 88: 1193–1203

    Article  CAS  PubMed  Google Scholar 

  45. Schlemmer HP et al. (1999) Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. Cancer Res 59: 2363–2369

    CAS  PubMed  Google Scholar 

  46. Nylen U et al. (2001) Effects of 5-fluorouracil on cell cycle arrest and toxicity induced by X-irradiation in normal mammalian cells. Cell Prolif 34: 85–98

    Article  CAS  PubMed  Google Scholar 

  47. Lawrence TS et al. (1994) Dependence of 5-fluorouracil-mediated radiosensitization on DNA-directed effects. Int J Radiat Oncol Biol Phys 29: 519–523

    Article  CAS  PubMed  Google Scholar 

  48. Byfield JE (1989) 5-Fluorouracil radiation sensitization—a brief review. Invest New Drugs 7: 111–116

    Article  CAS  PubMed  Google Scholar 

  49. Byfield JE et al. (1982) Pharmacologic requirements for obtaining sensitization of human tumor cells in vitro to combined 5-fluorouracil or ftorafur and X rays. Int J Radiat Oncol Biol Phys 8: 1923–1933

    Article  CAS  PubMed  Google Scholar 

  50. Sawada N et al. (1999) X-ray irradiation induces thymidine phosphorylase and enhances the efficacy of capecitabine (Xeloda) in human cancer xenografts. Clin Cancer Res 5: 2948–2953

    CAS  PubMed  Google Scholar 

  51. Eastman A and Barry MA (1987) Interaction of trans-diamminedichloroplatinum (II) with DNA: formation of monofunctional adducts and their reaction with glutathione. Biochemistry 26: 3303–3307

    Article  CAS  PubMed  Google Scholar 

  52. Begg AC (1990) Cisplatin and radiation: interaction probabilities and therapeutic possibilities. Int J Radiat Oncol Biol Phys 19: 1183–1189

    Article  CAS  PubMed  Google Scholar 

  53. Douple EB and Richmond RC (1978) Platinum complexes as radiosensitizers of hypoxic mammalian cells. Br J Cancer Suppl 37: S98–S102

    Google Scholar 

  54. Yang LX et al. (1995) Irradiation enhances cellular uptake of carboplatin. Int J Radiat Oncol Biol Phys 33: 641–646

    Article  CAS  PubMed  Google Scholar 

  55. Douple EB et al. (1985) Carboplatin as a potentiator of radiation therapy. Cancer Treat Rev 12 (Suppl A): S111–S124

    Article  Google Scholar 

  56. Yang LX et al. (1995) Carboplatin enhances the production and persistence of radiation-induced DNA single-strand breaks. Radiat Res 143: 302–308

    Article  CAS  PubMed  Google Scholar 

  57. Cividalli A et al. (2002) Radiosensitization by oxaliplatin in a mouse adenocarcinoma: influence of treatment schedule. Int J Radiat Oncol Biol Phys 52: 1092–1098

    Article  CAS  PubMed  Google Scholar 

  58. Chen AY et al. (1999) DNA topoisomerase I-targeting drugs as radiation sensitizers. Oncology (Williston Park) 13: 39–46

    CAS  Google Scholar 

  59. Mattern MR et al. (1991) Synergistic cell killing by ionizing radiation and topoisomerase I inhibitor topotecan (SK&F 104864). Cancer Res 51: 5813–5816

    CAS  PubMed  Google Scholar 

  60. Omura M et al. (1997) SN-38, a metabolite of the camptothecin derivative CPT-11, potentiates the cytotoxic effect of radiation in human colon adenocarcinoma cells grown as spheroids. Radiother Oncol 43: 197–201

    Article  CAS  PubMed  Google Scholar 

  61. Baraboi VA et al. (2001) Radiosensitization effect of taxol on malignant tumor cells [Russian]. Tsitol Genet 35: 16–21

    CAS  PubMed  Google Scholar 

  62. Creane M et al. (1999) Radiobiological effects of docetaxel (Taxotere): a potential radiation sensitizer. Int J Radiat Biol 75: 731–737

    Article  CAS  PubMed  Google Scholar 

  63. Gorodetsky R et al. (1998) Paclitaxel-induced modification of the effects of radiation and alterations in the cell cycle in normal and tumor mammalian cells. Radiat Res 150: 283–291

    Article  CAS  PubMed  Google Scholar 

  64. Minsky BD et al. (1999) Final report of Intergroup Trial 0122 (ECOG PE-289, RTOG 90-12): phase II trial of neoadjuvant chemotherapy plus concurrent chemotherapy and high-dose radiation for squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys 43: 517–523

    Article  CAS  PubMed  Google Scholar 

  65. Minsky BD et al. (2002) INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol 20: 1167–1174

    Article  CAS  PubMed  Google Scholar 

  66. Kleinberg L et al. (2003) Mature survival results with preoperative cisplatin, protracted infusion 5-fluorouracil, and 44-Gy radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys 56: 328–334

    Article  CAS  PubMed  Google Scholar 

  67. Urba SG et al. (2001) Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 19: 305–313

    Article  CAS  PubMed  Google Scholar 

  68. Walsh TN et al. (1996) A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 335: 462–467

    Article  CAS  PubMed  Google Scholar 

  69. Bosset JF et al. (1997) Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med 337: 161–167

    Article  CAS  PubMed  Google Scholar 

  70. Le Prise E et al. (1994) A randomized study of chemotherapy, radiation therapy, and surgery versus surgery for localized squamous cell carcinoma of the esophagus. Cancer 73: 1779–1784

    Article  CAS  PubMed  Google Scholar 

  71. Burmeister BH et al. (2005) Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: a randomised controlled phase III trial. Lancet Oncol 6: 659–668

    Article  PubMed  Google Scholar 

  72. Tepper JE et al. (2006) Superiority of trimodality therapy to surgery alone in esophageal cancer: Results of CALGB 9781 [abstract #4012]. J Clin Oncol 24 (Suppl): 18S

    Google Scholar 

  73. Law S et al. (2004) Predictive factors for postoperative pulmonary complications and mortality after esophagectomy for cancer. Ann Surg 240: 791–800

    Article  PubMed  PubMed Central  Google Scholar 

  74. Doty JR et al. (2002) Postesophagectomy morbidity, mortality, and length of hospital stay after preoperative chemoradiation therapy. Ann Thorac Surg 74: 227–231

    Article  PubMed  Google Scholar 

  75. Ilson DH et al. (2003) Phase I trial of escalating-dose irinotecan given weekly with cisplatin and concurrent radiotherapy in locally advanced esophageal cancer. J Clin Oncol 21: 2926–2932

    Article  CAS  PubMed  Google Scholar 

  76. Ilson DH et al. (2000) A phase II trial of paclitaxel and cisplatin in patients with advanced carcinoma of the esophagus. Cancer J 6: 316–323

    CAS  PubMed  Google Scholar 

  77. Swisher SG et al. (2003) Long-term outcome of phase II trial evaluating chemotherapy, chemoradiotherapy, and surgery for locoregionally advanced esophageal cancer. Int J Radiat Oncol Biol Phys 57: 120–127

    Article  PubMed  Google Scholar 

  78. Ajani JA et al. (2004) Preoperative induction of CPT-11 and cisplatin chemotherapy followed by chemoradiotherapy in patients with locoregional carcinoma of the esophagus or gastroesophageal junction. Cancer 100: 2347–2354

    Article  CAS  PubMed  Google Scholar 

  79. Kleinberg LR et al. (2006) E1201: an Eastern Cooperative Oncology Group (ECOG) randomized phase II trial to measure response rate and toxicity of preoperative combined modality paclitaxel/cisplatin/RT or irinotecan/cisplatin/RT in adenocarcinoma of the esophagus [abstract]. Int J Radiat Oncol Biol Phys 66 (Suppl 1): S80

    Article  Google Scholar 

  80. Meluch AA et al. (2003) Preoperative therapy with concurrent paclitaxel/carboplatin/infusional 5-FU and radiation therapy in locoregional esophageal cancer: final results of a Minnie Pearl Cancer Research Network phase II trial. Cancer J 9: 251–260

    Article  CAS  PubMed  Google Scholar 

  81. Stahl M et al. (2005) Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol 23: 2310–2317

    Article  PubMed  Google Scholar 

  82. Bedenne et al. (2002) Randomized phase III trial in locally advanced esophageal cancer: radiochemotherapy followed by surgery versus radiochemotherapy alone (FFCD 9102) [abstract #519]. Proc Am Soc Clin Oncol 21

  83. Huang SM et al. (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59: 1935–1940

    CAS  PubMed  Google Scholar 

  84. Huang SM et al. (2002) Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 62: 4300–4306

    CAS  PubMed  Google Scholar 

  85. Chinnaiyan P et al. (2005) Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res 65: 3328–3335

    Article  CAS  PubMed  Google Scholar 

  86. Gibson MK et al. (2003) Epidermal growth factor receptor, p53 mutation, and pathological response predict survival in patients with locally advanced esophageal cancer treated with preoperative chemoradiotherapy. Clin Cancer Res 9: 6461–6468

    CAS  PubMed  Google Scholar 

  87. Sartor CI (2004) Mechanisms of disease: radiosensitization by epidermal growth factor receptor inhibitors. Nat Clin Pract Oncol 1: 80–87

    Article  CAS  PubMed  Google Scholar 

  88. Baumann M and Krause M (2004) Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 72: 257–266

    Article  CAS  PubMed  Google Scholar 

  89. Bianco C et al. (2002) Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa). Clin Cancer Res 8: 3250–3258

    CAS  PubMed  Google Scholar 

  90. Azria D et al. (2003) Radiotherapy and inhibitors of epidermal growth factor receptor: preclinical findings and preliminary clinical trials [French]. Bull Cancer 90: S202–S212

    PubMed  Google Scholar 

  91. Schmidt-Ullrich RK et al. (1997) Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15: 1191–1197

    Article  CAS  PubMed  Google Scholar 

  92. Bonner JA et al. (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354: 567–578

    Article  CAS  PubMed  Google Scholar 

  93. Bonner JA et al. (2000) Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J Clin Oncol 18 (Suppl): 47S–53S

    CAS  PubMed  Google Scholar 

  94. Belka C et al. (2004) Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int J Radiat Oncol Biol Phys 58: 542–554

    Article  CAS  PubMed  Google Scholar 

  95. Lawrence TS et al. (1992) The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer. Cancer Res 52: 3698–3704

    CAS  PubMed  Google Scholar 

  96. Bases R (1978) DNA intercalating agents as adjuvants in radiation therapy. Int J Radiat Oncol Biol Phys 4: 345–346

    Article  CAS  PubMed  Google Scholar 

  97. Geng L et al. (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61: 2413–2419

    CAS  PubMed  Google Scholar 

  98. Garcia-Barros M et al. (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300: 1155–1159

    Article  CAS  PubMed  Google Scholar 

  99. Fuks Z and Kolesnick R (2005) Engaging the vascular component of the tumor response. Cancer Cell 8: 89–91

    Article  CAS  PubMed  Google Scholar 

  100. Chinnaiyan P et al. (2006) Radiation and new molecular agents, part II: targeting HDAC, HSP90, IGF-1R, PI3K, and Ras. Semin Radiat Oncol 16: 59–64

    Article  PubMed  Google Scholar 

  101. Choudhury A et al. (2006) Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol 16: 51–58

    Article  PubMed  Google Scholar 

  102. Harari PM and Huang SM (2000) Modulation of molecular targets to enhance radiation. Clin Cancer Res 6: 323–325

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlene A Forastiere.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinberg, L., Gibson, M. & Forastiere, A. Chemoradiotherapy for localized esophageal cancer: regimen selection and molecular mechanisms of radiosensitization. Nat Rev Clin Oncol 4, 282–294 (2007). https://doi.org/10.1038/ncponc0796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing