Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology informing clinical practice: from bills of mortality to population laboratories

Abstract

The earliest observations on population patterns of disease and how they might inform medical practice probably occurred during the 17th century, and they continue to the present day, with increasing relevance to nutritional and infectious diseases, and cancer and other chronic diseases. Chronic-disease methods grew out of infectious-disease epidemiology, in which both field and laboratory methods are used. In diseases where intermediate biology was not initially observable (particularly cancer), record-based and interview-based epidemiology revealed some key exposures (e.g. smoking and radiation). With measurable intermediates (e.g. blood lipids), cardiovascular epidemiology also yielded inferences on causal pathways. Important changes that are remaking the field of epidemiology and will ultimately influence all aspects of medical practice include the following: high-throughput genotyping, allowing genetic and gene–environment causes of disease to be identified; high-throughput proteomics, which should allow the development of early-detection methods; new tools for the measurement of exposures; and a molecular basis for disease taxonomy. These new methods will allow a much better understanding of both the etiology and the intermediate stages of disease; however, new methods do not obviate the necessity for good study design, especially the need to be clear on the difference between observation and experiment. The greatest opportunities to inform medical practice come from the application of new methods to large-scale human observational studies, which include genetics, environment, early-detection markers, molecular classification of outcome, and treatment data. Improved molecular classification of disease will allow smaller, focused clinical trials to be undertaken and, ultimately, the tailoring of treatment to the biological profile of patient and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of the cancer process where genomic markers, and biomarkers of exposure, state and somatic change, provide the biological material for conducting molecular-epidemiology studies
Figure 2: Observation and experiment
Figure 3: Design for population laboratories: augmenting the standard cohort design

Similar content being viewed by others

References

  1. Ibrahim M and Spitzer W (1979) The case–control study. Consensus and controversy. J Chron Dis 32: 1–144

    Article  Google Scholar 

  2. Takaki K (1887) Kakke or Japanese Beri-Beri. Lancet 2: 189–190

    Google Scholar 

  3. Carpenter K (2003) A short history of history of nutritional science: part 2 (1885–1912). J Nutr 133: 975–984

    Article  CAS  Google Scholar 

  4. Singh MK and Brillmann J (online 10 June 2005) Yellow Fever [http://www.emedicine.com/emerg/topic645.htm] (accessed 11 October 2005)

  5. Reed W and Agramonte A (1983) Landmark article. Feb 16, 1901: The etiology of yellow fever. An additional note. By Walter Reed, Jas. Carroll and Aristides Agramonte. JAMA 250: 649–658

    Article  CAS  Google Scholar 

  6. Kromhout D et al. (1993) The Seven Countries Study. A Scientific Adventure in Cardiovascular Epidemiology. Minneapolis: University of Minnesota

    Google Scholar 

  7. Hill ID et al. (1966) Mortality among asbestos workers. Proc R Soc Med 59: 59–60

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Doll R and Hill AB (1950) Smoking and carcinoma of the lung. BMJ 2: 739–748

    Article  CAS  Google Scholar 

  9. Armitage P et al. (1959) Dose–response relationship in radiation leukaemia. Nature 184 (Suppl 21): S1669–S1670

    Article  Google Scholar 

  10. Rotkin I (1973) A comparison review of key epidemiological studies in cervical cancer related to current searches for transmissible agents. Cancer Res 33: 1353–1367

    CAS  PubMed  Google Scholar 

  11. MacMahon B et al. (1970) Age at first birth and breast cancer. Bull WHO 43: 209–221

    CAS  PubMed  Google Scholar 

  12. Cole P et al. (1976) Oestrogen profiles of parous and nulliparous women. Lancet 2: 596–597

    Article  CAS  Google Scholar 

  13. Cuzick J et al. (1992) Human papillomavirus type 16 DNA in cervical smears as predictor of high-grade cervical cancer. Lancet 339: 959–960

    Article  CAS  Google Scholar 

  14. Clarke E and Anderson T (1979) Does screening by 'Pap' smears help prevent cervical cancer? A case–control study. Lancet 2: 1–4

    Article  CAS  Google Scholar 

  15. Morson B (1974) The polyp-cancer sequence in the large bowel. Proc R Soc Med 67: 451–457

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vogelstein B et al. (1989) Allelotype of colorectal carcinomas. Science 244: 207–211

    Article  CAS  Google Scholar 

  17. Groden J et al. (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66: 589–600

    Article  CAS  Google Scholar 

  18. Nishisho I et al. (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253: 665–669

    Article  CAS  Google Scholar 

  19. Miki Y et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71

    Article  CAS  Google Scholar 

  20. Malkin D et al. (1990) Germline p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238

    Article  CAS  Google Scholar 

  21. Fishel R et al. (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038

    Article  CAS  Google Scholar 

  22. Leach FS et al. (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1225

    Article  CAS  Google Scholar 

  23. Peltomaki P et al. (1993) Genetic mapping of a locus predisposing to human colorectal cancer. Science 260: 810–812

    Article  CAS  Google Scholar 

  24. Epplein M et al. (2005) Genetic services for familial cancer patients: a follow-up survey of National Cancer Institute Cancer Centers. J Clin Oncol 23: 4713–4718

    Article  Google Scholar 

  25. Salsburg D (2001) The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. New York: WH Freeman and Company

    Google Scholar 

  26. Caporaso N (1999) Selection of candidate genes for population studies. IARC Sci Publ 148: 23–36

    Google Scholar 

  27. Pharoah PD et al. (2004) Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer 4: 850–860

    Article  CAS  Google Scholar 

  28. Etzioni R et al. (2003) The case for early detection. Nat Rev Cancer 3: 243–252

    Article  CAS  Google Scholar 

  29. Lampe JW et al. (2004) Signatures of environmental exposures using peripheral leukocyte gene expression: tobacco smoke. Cancer Epidemiol Biomarkers Prev 13: 445–453

    CAS  PubMed  Google Scholar 

  30. Bittner M et al. (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406: 536–540

    Article  CAS  Google Scholar 

  31. van't Veer LJ et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536

    Article  CAS  Google Scholar 

  32. Lynch TJ et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139

    Article  CAS  Google Scholar 

  33. Paez JG et al. (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500

    Article  CAS  Google Scholar 

  34. Potter JD and Rebbeck TR Encyclopedia of Medical Genomics and Proteomics, in press

  35. Zhang Y et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432

    Article  CAS  Google Scholar 

  36. Weston A et al. (1998) CYP17 genotype and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7: 941–944

    CAS  PubMed  Google Scholar 

  37. Haiman CA et al. (1999) The relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer. Cancer Res 59: 1015–1020

    CAS  PubMed  Google Scholar 

  38. Helzlsouer KJ et al. (1998) Association between glutathione S-transferase M1, P1, and T1 genetic polymorphisms and development of breast cancer. J Natl Cancer Inst 90: 512–518

    Article  CAS  Google Scholar 

  39. Shields PG et al. (1998) Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians. Cancer Epidemiol Biomarkers Prev 7: 453–458

    CAS  PubMed  Google Scholar 

  40. Lerman C et al. (1999) Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psychol 18: 14–20

    Article  CAS  Google Scholar 

  41. Lerman C et al. (2000) Interacting effects of the serotonin transporter gene and neuroticism in smoking practices and nicotine dependence. Mol Psychiatry 5: 189–192

    Article  CAS  Google Scholar 

  42. Sabol SZ et al. (1999) A genetic association for cigarette smoking behavior. Health Psychol 18: 7–13

    Article  CAS  Google Scholar 

  43. Miller M 3rd et al. (2001) Genetic variability in susceptibility and response to toxicants. Toxicol Lett 120: 269–280

    Article  CAS  Google Scholar 

  44. Vineis P (2004) Individual susceptibility to carcinogens. Oncogene 23: 6477–6483

    Article  CAS  Google Scholar 

  45. Bigler J et al. (2001) CYP2C9 and UGT1A6 genotypes modulate the protective effect of aspirin on colon adenoma risk. Cancer Res 61: 3566–3569

    CAS  PubMed  Google Scholar 

  46. Ulrich CM et al. (2002) Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res 62: 3361–3364

    CAS  PubMed  Google Scholar 

  47. Ulrich CM et al. (1999) Colorectal adenomas and the C677T MTHFR polymorphism: evidence for gene-environment interaction? Cancer Epidemiol Biomarkers Prev 8: 659–668

    CAS  PubMed  Google Scholar 

  48. Ulrich CM et al. (2001) Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 98: 231–234

    Article  CAS  Google Scholar 

  49. Robien K et al. (2004) Methylenetetrahydrofolate reductase genotype affects risk of relapse after hematopoietic cell transplantation for chronic myelogenous leukemia. Clin Cancer Res 10: 7592–7598

    Article  CAS  Google Scholar 

  50. Bodmer WF et al. (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328: 614–616

    Article  CAS  Google Scholar 

  51. Potter JD (2001) At the interfaces of epidemiology, genetics, and genomics. Nat Rev Genet 2: 142–147

    Article  CAS  Google Scholar 

  52. Hansen MF et al. (1985) Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA 82: 6216–6220

    Article  CAS  Google Scholar 

  53. Langholz B et al. (1999) Cohort studies for characterizing measured genes. J Natl Cancer Inst Monogr 26: 39–42

    Article  CAS  Google Scholar 

  54. Thomas A et al. (1999) Familial associations between cancer sites. Comput Biomed Res 32: 517–529

    Article  CAS  Google Scholar 

  55. Rebbeck TR et al. (2004) Genetic variation and cancer: improving the environment for publication of association studies. Cancer Epidemiol Biomarkers Prev 13: 1985–1986

    PubMed  Google Scholar 

  56. Hanash S (2003) Disease proteomics. Nature 422: 226–232

    Article  CAS  Google Scholar 

  57. Perou CM et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752

    Article  CAS  Google Scholar 

  58. Alon U et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96: 6745–6750

    Article  CAS  Google Scholar 

  59. Ransohoff DF (2004) Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer 4: 309–314

    Article  CAS  Google Scholar 

  60. Ransohoff DF (2005) Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 5: 142–149

    Article  CAS  Google Scholar 

  61. Hu J et al. (2005) The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomic Proteomic 3: 322–331

    Article  CAS  Google Scholar 

  62. Hedayat AS and Stufken J (2003) Optimal and efficient crossover designs under different assumptions about the carryover effects. J Biopharm Stat 13: 519–528

    Article  CAS  Google Scholar 

  63. Prevo LJ et al. (1999) p53-mutant clones and field effects in Barrett's esophagus. Cancer Res 59: 4784–4787

    CAS  PubMed  Google Scholar 

  64. Potter JD (2003) Epidemiology, cancer genetics and microarrays: making correct inferences, using appropriate designs. Trends Genet 19: 690–695

    Article  CAS  Google Scholar 

  65. Petricoin EF et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359: 572–577

    Article  CAS  Google Scholar 

  66. Potter J (2003) National Biospecimen Network and Public Health in National Biospecimen Network Blueprint, 99–101 (Eds Friede A et al.) Durham, NC, USA: Constella Group, Inc.

    Google Scholar 

  67. Margulies M et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380

    Article  CAS  Google Scholar 

  68. Tasevska N et al. (2005) Urinary sucrose and fructose as biomarkers for sugar consumption. Cancer Epidemiol Biomarkers Prev 14: 1287–1294

    Article  CAS  Google Scholar 

  69. Weis BK et al. (2005) Personalized exposure assessment: promising approaches for human environmental health research. Environ Health Perspect 113: 840–848

    Article  CAS  Google Scholar 

  70. Adam BL et al. (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62: 3609–3614

    CAS  PubMed  Google Scholar 

  71. Covell D et al. (2003) Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data. Mol Cancer Ther 2: 317–332

    CAS  PubMed  Google Scholar 

  72. Golub TR et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531–537

    Article  CAS  Google Scholar 

  73. Jass JR et al. (2002) Emerging concepts in colorectal neoplasia. Gastroenterology 123: 862–876

    Article  CAS  Google Scholar 

  74. Paz MF et al. (2003) A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 63: 1114–1121

    CAS  PubMed  Google Scholar 

  75. Wang ZC et al. (2004) Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 64: 64–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, J. Epidemiology informing clinical practice: from bills of mortality to population laboratories. Nat Rev Clin Oncol 2, 625–634 (2005). https://doi.org/10.1038/ncponc0359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing