Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surgery Insight: deep brain stimulation for movement disorders

Abstract

Over the past two decades, deep brain stimulation (DBS) has supplanted lesioning techniques for the treatment of movement disorders, and has been shown to be safe and efficacious. The primary therapeutic indications for DBS are essential tremor, dystonia and Parkinson's disease. In the case of Parkinson's disease, DBS is effective for treating the primary symptoms—tremor, bradykinesia and rigidity—as well as the motor complications of drug treatment. Progress has been made in understanding the effects of stimulation at the neuronal level, and this knowledge should eventually improve the effectiveness of this therapy. Preliminary studies also indicate that DBS might be used to treat Tourette's syndrome, obsessive-compulsive disorder, depression and epilepsy. As we will discuss in this review, the success of DBS depends on an appropriate rationale for the procedure, and on collaborations between neurologists and neurosurgeons in defining outcomes.

Key Points

  • In the 1950s, surgeons noted that stimulation used to localize thalamic targets to be lesioned for the relief of pain also improved the symptoms of movement disorders

  • Deep brain stimulation (DBS) is currently used to treat Parkinson's disease, essential tremor and dystonia, and patients with psychiatric disorders might also benefit from DBS therapy

  • A multidisciplinary team is required for evaluation and clinical decision-making in patients with movement disorders who are being considered for surgery

  • The neural elements that are most excitable in response to externally applied electric fields are the myelinated axons

  • Preoperative planning and target localization by most clinical teams currently relies on MRI localization, and microelectrode recording has an important role in improving the accuracy of targeting in stereotactic placement procedures

  • The long-term improvement and development of DBS will depend on our ability to understand its mechanism of action

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of deep brain stimulation on disability in patients with Parkinson's disease.
Figure 2: Effects of deep brain stimulation in patients with essential tremor.
Figure 3: Effects of deep brain stimulation in patients with dystonia.
Figure 4: Two types of electrophysiologic response to deep brain stimulation in rat ventral thalamic neurons.
Figure 5: Axial and coronal views of structures around the third ventricle, showing how targeting coordinates are obtained preoperatively.

Similar content being viewed by others

References

  1. Pool JL et al. (1956) Hypothalamic–hypophysial dysfunction in man. Laboratory and clinical assessment. In Hypothalamic–Hypophysial Interrelationships, 114–124 (Eds Fields WS et al.) Springfield: Charles C Thomas

    Google Scholar 

  2. Hosobuchi Y et al. (1975) Chronic thalamic and internal capsule stimulation for the control of central pain. Surg Neurol 4: 91–92

    CAS  PubMed  Google Scholar 

  3. Mazars G et al. (1973) Intermittent analgesic thalamic stimulation: preliminary note. Rev Neurol (Paris) 128: 273–279

    CAS  Google Scholar 

  4. Tasker RR et al. (1982) The Thalamus and Midbrain in Man: a Physiologic Atlas Using Electrical Stimulation. Springfield: Charles C Thomas

    Google Scholar 

  5. Hassler R (1955) The influence of stimulations and coagulations in the human thalamus on the tremor at rest and its physiopathologic mechanism. Proceedings of the Second International Congress of Neuropathology 2: 637–642

    Google Scholar 

  6. Merienne L and Mazars G (1982) Treatment of various dyskinesias by intermittent thalamic stimulation. Neurochirurgie 28: 201–206

    CAS  PubMed  Google Scholar 

  7. Benabid AL et al. (1991) Long term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403–406

    Article  CAS  PubMed  Google Scholar 

  8. Siegfried J and Lippitz B (1994) Chronic electrical stimulation of the VL–VPL complex and of the pallidum in the treatment of movement disorders: personal experience since 1982. Stereotact Funct Neurosurg 62: 71–75

    Article  CAS  PubMed  Google Scholar 

  9. Benabid AL et al. (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson's disease. Stereotact Funct Neurosurg 62: 76–84

    Article  CAS  PubMed  Google Scholar 

  10. Siegfried J and Lippitz B (1994) Bilateral chronic electrostimulation of the ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurg 35: 1126–1130

    Article  CAS  Google Scholar 

  11. Schuurman PR et al. (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. New Engl J Med 342: 461–468

    Article  CAS  PubMed  Google Scholar 

  12. Koller WC et al. (2001) Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord 16: 464–468

    Article  CAS  PubMed  Google Scholar 

  13. Sydow O et al. (2003) Multicentre European study of thalamic stimulation in essential tremor: a six year follow up. J Neurol Neurosurg Psychiatry 74: 1387–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krack P et al. (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 349: 1925–1934

    Article  CAS  PubMed  Google Scholar 

  15. Kumar R et al. (2000) Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson's disease. Neurology 55: S34–S39

    CAS  PubMed  Google Scholar 

  16. Benabid AL et al. (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84: 203–214

    Article  CAS  PubMed  Google Scholar 

  17. Fahn S and Elton RL (1987) UPDRS development committee: Unified Parkinson's Disease Rating Scale. In Recent Revelopments in Parkinson's Disease, 153–164 (Eds Fahn S et al.) Florham Park: MacMillan Health Care Information

    Google Scholar 

  18. Hosobuchi Y (1986) Subcortical electrical stimulation for control of intractable pain in humans: report of 122 cases (1970–1984). J Neurosurg 64: 543–553

    Article  CAS  PubMed  Google Scholar 

  19. Bendok B and Levy RM (1998) Brain stimulation for persistent pain management. In Textbook of Stereotactic and Functional Neurosurgery, 1539–1546 (Eds Gildenberg PL and Tasker RR) New York: McGraw-Hill

    Google Scholar 

  20. Beric A et al. (2001) Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg 77: 73–78

    Article  CAS  PubMed  Google Scholar 

  21. Hariz MI (2002) Complications of deep brain stimulation surgery. Mov Disord 17 (Suppl 3): S162–S166

    Article  PubMed  Google Scholar 

  22. Vesper J et al. (2002) Dual channel deep brain stimulation system (Kinetra) for Parkinson's disease and essential tremor: a prospective multicentre open label clinical study. J Neurol Neurosurg Psychiatry 73: 275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krauss JK et al. (2003) Chronic stimulation of the globus pallidus internus for treatment of non-dYT1 generalized dystonia and choreoathetosis: 2-year follow up. J Neurosurg 98: 785–792

    Article  PubMed  Google Scholar 

  24. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285

    Article  CAS  PubMed  Google Scholar 

  25. Albin RL et al. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375

    Article  CAS  PubMed  Google Scholar 

  26. Sambrook MA et al. (1988) The basal ganglia mechanisms mediating primate models of movement disorders. Current Problems in Neurology 9: 123–145

    Google Scholar 

  27. Ghika J et al. (1998) Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with Parkinson's disease with severe motor fluctuations: a 2-year follow-up review. J Neurosurg 89: 713–718

    Article  CAS  PubMed  Google Scholar 

  28. Loher TJ et al. (2002) Effect of chronic pallidal deep brain stimulation on off period dystonia and sensory symptoms in advanced Parkinson's disease. J Neurol Neurosurg Psychiatry 73: 395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar R et al. (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology 51: 850–855

    Article  CAS  PubMed  Google Scholar 

  30. Thobois S et al. (2002) Subthalamic nucleus stimulation in Parkinson's disease: clinical evaluation of 18 patients. J Neurol 249: 529–534

    Article  CAS  PubMed  Google Scholar 

  31. Anderson VC et al. (2005) Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 62: 554–560

    Article  PubMed  Google Scholar 

  32. Mazzone P et al. (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease. Neuro Rep 16: 1877–1881

    Google Scholar 

  33. Plaha P and Gill S (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease. Neuro Rep 16: 1883–1887

    Google Scholar 

  34. Lenz FA et al. (1994) Single neuron analysis of the human ventral thalamic nuclear group: tremor-related activity in functionally identified cells. Brain 117: 531–543

    Article  PubMed  Google Scholar 

  35. Hua SE and Lenz FA (2005) Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol 93: 117–127.

    Article  PubMed  Google Scholar 

  36. Deuschl G et al. (2000) The pathophysiology of parkinsonian tremor: a review. J Neurol 247 (Suppl 5): V33–V48

    Article  PubMed  Google Scholar 

  37. Krack P et al. (1997) Stimulation of subthalamic nucleus alleviates tremor in Parkinson's disease. Lancet 350: 1675

    Article  CAS  PubMed  Google Scholar 

  38. Zesiewicz TA et al. (2005) Practice parameter: therapies for essential tremor: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 64: 2008–2020

    Article  CAS  PubMed  Google Scholar 

  39. Kumar R et al. (2003) Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 61: 1601–1604

    Article  PubMed  Google Scholar 

  40. Lee JYK and Kondziolka D (2005) Thalamic deep brain stimulation for management of essential tremor. J Neurosurg 103: 400–403

    Article  PubMed  Google Scholar 

  41. Kleiner-Fisman G et al. (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 99: 489–495

    Article  PubMed  Google Scholar 

  42. Stover NP et al. (2005) Stimulation of the subthalamic nucleus in a patient with Parkinson disease and essential tremor. Arch Neurol 62: 141–143

    Article  PubMed  Google Scholar 

  43. Chou KL et al. (2005) Bilateral subthalamic nucleus deep brain stimulation in a patient with cervical dystonia and essential tremor. Mov Disord 20: 377–380

    Article  PubMed  Google Scholar 

  44. Murata J et al. (2003) Electrical stimulation of the posterior subthalamic area for the treatment of intractable proximal tremor. J Neurosurg 99: 708–715

    Article  PubMed  Google Scholar 

  45. Mohadjer M et al. (1990) Long term results of stereotaxy in the treatment of essential tremor. Stereo Funct Neurosurg 54: 125–129

    Article  Google Scholar 

  46. Papavassiliou E et al. (2004) Thalamic deep brain stimulation for essential tremor: relation of lead location to outcome. Neurosurg 54: 1120–1129

    Article  Google Scholar 

  47. Gross RE et al. (2004) Histological analysis of the location of effective thalamic stimulation for tremor: case report. J Neurosurg 100: 547–552

    Article  PubMed  Google Scholar 

  48. Lenz FA et al. (1999) Thalamic single neuron activity in patients with dystonia: dystonia-related activity and somatic sensory reorganization. J Neurophysiol 82: 2372–2392

    Article  CAS  PubMed  Google Scholar 

  49. Hallett M (1995) Is dystonia a sensory disorder? Ann Neurol 38: 139–140

    Article  CAS  PubMed  Google Scholar 

  50. Vidailhet M et al. (2005) Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352: 459–467

    Article  CAS  PubMed  Google Scholar 

  51. Krauss JK et al. (2004) Deep brain stimulation for dystonia. J Clin Neurophysiol 21: 18–30

    Article  PubMed  Google Scholar 

  52. Fahn S et al. (1998) Classification of dystonia. Adv Neurol 78: 1–10

    Article  CAS  PubMed  Google Scholar 

  53. Eltahawy HA et al. (2004) Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurg 54: 613–619

    Article  Google Scholar 

  54. Krack P et al. (1999) From off-period dystonia to peak-dose chorea: the clinical spectrum of varying subthalamic nucleus activity. Brain 122: 1133–1146

    Article  PubMed  Google Scholar 

  55. Chou KL et al. (2005) Bilateral subthalamic nucleus deep brain stimulation in a patient with cervical dystonia and essential tremor. Mov Disord 20: 377–380

    Article  PubMed  Google Scholar 

  56. Mayberg HS et al. (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45: 651–660

    Article  CAS  PubMed  Google Scholar 

  57. Nuttin BJ et al. (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurg 52: 1263–1272

    Article  Google Scholar 

  58. Anderson D and Ahmed A (2003) Treatment of patients with intractable obsessive-compulsive disorder with anterior capsular stimulation: case report. J Neurosurg 98: 1104–1108

    Article  PubMed  Google Scholar 

  59. Kopell BH et al. (2004) Deep brain stimulation for psychiatric disorders. J Clin Neurophysiol 21: 51–67

    Article  PubMed  Google Scholar 

  60. Visser-Vandewalle V et al. (2003) Chronic bilateral thalamic stimulation: a new therapeutic approach in intractable Tourette syndrome: report of three cases. J Neurosurg 99: 1094–1100

    Article  PubMed  Google Scholar 

  61. Hodaie M et al. (2002) Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43: 603–608

    Article  PubMed  Google Scholar 

  62. Oommen J et al. (2005) Experimental electrical stimulation therapy for epilepsy. Curr Treat Options Neurol 7: 261–271

    Article  PubMed  Google Scholar 

  63. Okun MS et al. (2005) Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centres. Arch Neurol 62: 1250–1255

    Article  PubMed  Google Scholar 

  64. Saint-Cyr JA and Trepanier LL (2000) Neuropsychologic assessment of patients for movement disorder surgery. Mov Disord 15: 771–783

    Article  CAS  PubMed  Google Scholar 

  65. Finelli DA et al. (2002) MR imaging-related heating of deep brain stimulation electrodes: in vitro study. AJNR Am J Neuroradiol 23: 1795–1802

    PubMed  Google Scholar 

  66. Alterman RL et al. (2004) Immediate and sustained relief of levodopa-induced dyskinesias after dorsal relocation of a deep brain stimulation lead: case report. Neurosurg Focus 17: E6

    Article  PubMed  Google Scholar 

  67. Kuncel AM and Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115: 2431–2441

    Article  PubMed  Google Scholar 

  68. Kiss ZH et al. (2003) Neural substrates of microstimulation-evoked tingling: a chronaxie study in human somatosensory thalamus. Eur J Neurosci 18: 728–732

    Article  PubMed  Google Scholar 

  69. McIntyre CC et al. (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115: 589–595

    Article  PubMed  Google Scholar 

  70. Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98: 417–440

    Article  PubMed  Google Scholar 

  71. Durand DM (2003) Electric field effects in hyperexcitable neural tissue: a review. Radiat Prot Dosimetry 106: 325–331

    Article  CAS  PubMed  Google Scholar 

  72. Kiss ZH et al. (2003) Is the target for thalamic deep brain stimulation the same as for thalamotomy? Mov Disord 18: 1169–1175

    Article  PubMed  Google Scholar 

  73. Anderson T et al. (2004) Mechanisms of deep brain stimulation: an intracellular study in rat thalamus. J Physiol 559: 301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McIntyre CC et al. (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115: 1239–1248

    Article  PubMed  Google Scholar 

  75. Dostrovsky JO et al. (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84: 570–574

    Article  CAS  PubMed  Google Scholar 

  76. Brown P et al. (2004) Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease. Exp Neurol 188: 480–490

    Article  PubMed  Google Scholar 

  77. Garonzik IM et al. (2002) Intraoperative microelectrode and semi-microelectrode recording during the physiological localization of the thalamic nucleus ventral intermediate. Mov Disord 17 (Suppl 3): S135–S144

    Article  PubMed  Google Scholar 

  78. Starr PA (2002) Placement of deep brain stimulators into the subthalamic nucleus or globus pallidus internus: technical approach. Stereotact Funct Neurosurg 79: 118–145

    Article  PubMed  Google Scholar 

  79. Schaltenbrand G and Walker AE (1982) Stereotaxy of the Human Brain. New York: Thieme-Stratton

    Google Scholar 

  80. Benabid AL et al. (2002) Imaging of subthalamic nucleus and ventralis intermedius of the thalamus. Mov Disord 17 (Suppl 3): S123–S129

    Article  PubMed  Google Scholar 

  81. Simon SL et al. (2005) Error analysis of MRI and Leksell stereotactic frame target localization in deep brain stimulation surgery. Stereotact Funct Neurosurg 83: 1–5

    Article  PubMed  Google Scholar 

  82. Hamid NA et al. (2005) Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. J Neurol Neurosurg Psychiatry 76: 409–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lenz FA et al. (1988) Techniques for microstimulation and recordings of single units and evoked potentials during stereotactic surgery. J Neurosurg 68: 630–634

    Article  CAS  PubMed  Google Scholar 

  84. Vitek JL et al. (1998) Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson's disease. J Neurosurg 88: 1027–1043

    Article  CAS  PubMed  Google Scholar 

  85. Hutchison WD et al. (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann Neurol 44: 622–628

    Article  CAS  PubMed  Google Scholar 

  86. Lenz FA et al. (1988) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59: 299–316

    Article  CAS  PubMed  Google Scholar 

  87. Garonzik IM et al. (2003) Microelectrode techniques: single cell and field potential recordings in the thalamus and basal ganglia. In Microelectrodes in Movement Disorder Surgery, 28–37 (Ed. Burchiel KJ) Stuttgart: Thieme

    Google Scholar 

  88. Cintas P et al. (2003) Deep brain stimulation for Parkinson's disease: correlation between intraoperative subthalamic nucleus neurophysiology and most effective contacts. Stereotact Funct Neurosurg 80: 108–113

    Article  CAS  PubMed  Google Scholar 

  89. McIntyre CC et al. (2004) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21: 40–50

    Article  PubMed  Google Scholar 

  90. Benazzouz A et al. (2002) Intraoperative microrecordings of the subthalamic nucleus in Parkinson's disease. Mov Disord 17 (Suppl 3): S145–S149

    Article  PubMed  Google Scholar 

  91. Motta PS and Judy JW (2005) Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans Biomed Eng 52: 923–933

    Article  PubMed  Google Scholar 

  92. Chen YY et al. (2004) A laser micromachined probe for recording multiple field potentials in the thalamus. J Neurosci Methods 139: 99–109

    Article  PubMed  Google Scholar 

  93. Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78: 146–157

    Article  PubMed  Google Scholar 

  94. Hamani C et al. (2005) Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63: 249–253

    Article  PubMed  Google Scholar 

  95. Vitek JL (2002) Deep brain stimulation for Parkinson's disease: a critical re-evaluation of STN versus GPi DBS. Stereotact Funct Neurosurg 78: 119–131

    Article  PubMed  Google Scholar 

  96. Voon V et al. (2005) Psychiatric symptoms in patients with Parkinson disease presenting for deep brain stimulation surgery. J Neurosurg 103: 246–251

    Article  PubMed  Google Scholar 

  97. Jankovic J et al. (1995) Outcome after stereotactic thalamotomy for parkinsonian, essential and other types of tremor. Neurosurg 37: 680–687

    Article  CAS  Google Scholar 

  98. Marsden CD and Parkes JD (1977) Success and problems of long-term levodopa therapy in parkinson's disease. Lancet 1: 345–349

    Article  CAS  PubMed  Google Scholar 

  99. Marsden CD (1994) Problems with long-term levodopa therapy for Parkinson's disease. Clin Neuropharmacol 17 (Suppl 2): S32–S44

    PubMed  Google Scholar 

  100. Watts RL and Koller WC (1998) Movement Disorders. New York: McGraw-Hill

    Google Scholar 

  101. Fahn S et al. (1988) Clinical rating scale for tremor. In Parkinson's Disease and Movement Disorders, 225–234 (Eds Jankovic J and Tolosa E) Baltimore: Urban and Schwarzenberg

    Google Scholar 

  102. Starr PA et al. (1999) Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44: 303–313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick A Lenz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, W., Lenz, F. Surgery Insight: deep brain stimulation for movement disorders. Nat Rev Neurol 2, 310–320 (2006). https://doi.org/10.1038/ncpneuro0193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing