Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The importance of the intrarenal renin–angiotensin system

Abstract

Evidence suggests that virtually every organ system in the human body possesses a local renin–angiotensin system (RAS). These local systems seem to be independently regulated and compartmentalized from the plasma circulation, perhaps with the exception of the vascular endothelial system, which is responsible for maintaining physiological plasma levels of RAS components. Among these local RASs, the kidney RAS—the focus of this Review—seems to be of critical importance for the regulation of blood pressure and salt balance. Indeed, overactivation of the intrarenal RAS in certain disease states constitutes a pathogenic mechanism that leads to tissue injury, proliferation, fibrosis and ultimately, end-organ damage. Intrarenal levels of angiotensin peptides are considerably higher than those in plasma or any other organ tissue. Moreover, the kidney has a unique capacity to degrade angiotensin peptides, perhaps to maintain its intrinsic homeostasis. Interestingly, each local RAS has a distinct enzymatic profile resulting in different patterns of angiotensin fragment generation in different tissues. A better understanding of the autocrine and paracrine mechanisms involved in the renal RAS and other local RASs might direct future organ-specific therapy.

Key Points

  • Intrarenal levels of angiotensin II and other angiotensin peptides are considerably higher than those in plasma; both glomerular and tubular compartments of the kidney possess an intrinsic local renin–angiotensin system

  • Upregulation of the intrarenal renin–angiotensin system has been linked with the pathogenesis of various models of proteinuric kidney diseases including diabetic and hypertensive glomerulopathies

  • Intrarenal angiotensin-converting enzyme 2 activity seems to counterbalance the actions of angiotensin-converting enzyme by converting angiotensin II to angiotensin-(1–7), a peptide that primarily antagonizes the angiotensin II type 1 receptor-mediated antinatriuretic, pressor and profibrotic effects of angiotensin II, presumably through activation of the mas receptor

  • Aminopeptidase A and neprilysin are peptidases that are highly expressed in the kidney and have an important role in the intrarenal metabolism of angiotensin I and angiotensin II

  • The binding of renin to the prorenin receptor constitutes a novel mechanism that activates the intrarenal renin–angiotensin system; this finding implies that angiotensin-II-independent mechanisms of tissue injury might exist

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A contemporary view of the synthesis and metabolism of angiotensin and related peptides.
Figure 2: Expression of angiotensin-II-forming and angiotensin-II-degrading or converting enzymes in (A) resident renal cells, (B) cells in the renal vasculature (i.e. endothelial and vascular smooth muscle cells), and (C) infiltrating cell types (i.e. mast cells, macrophages and neutrophils) that have been identified in certain kidney diseases.

Similar content being viewed by others

References

  1. Dzau VJ and Re R (1994) Tissue angiotensin system in cardiovascular medicine: a paradigm shift? Circulation 89: 493–498

    CAS  PubMed  Google Scholar 

  2. Lai KN et al. (1998) Gene expression of the renin-angiotensin system in human kidney. J Hypertens 16: 91–102

    CAS  PubMed  Google Scholar 

  3. Cassis LA et al. (2008) Local adipose tissue renin-angiotensin system. Curr Hypertens Rep 10: 93–98

    CAS  PubMed  PubMed Central  Google Scholar 

  4. von Bohlen and Halbach O (2005) The renin-angiotensin system in the mammalian central nervous system. Curr Protein Pept Sci 6: 355–371

    Google Scholar 

  5. Leung PS and de Gasparo M (2006) Involvement of the pancreatic renin-angiotensin system in insulin resistance and the metabolic syndrome. J Cardiometab Syndr 1: 197–203

    PubMed  Google Scholar 

  6. Siragy HM (2006) Angiotensin II compartmentalization within the kidney: effects of salt diet and blood pressure alterations. Curr Opin Nephrol Hypertens 15: 50–53

    CAS  PubMed  Google Scholar 

  7. Schelling P et al. (1991) Angiotensin and cell growth: a link to cardiovascular hypertrophy? J Hypertens 9: 3–15

    CAS  PubMed  Google Scholar 

  8. Ketteler M et al. (1995) Transforming growth factor-beta and angiotensin II: the missing link from glomerular hyperfiltration to glomerulosclerosis? Annu Rev Physiol 57: 279–295

    CAS  PubMed  Google Scholar 

  9. Chappell MC et al. (2004) Novel aspects of the renal renin-angiotensin system: angiotensin-(1–7), ACE2 and blood pressure regulation. Contrib Nephrol 143: 77–89

    PubMed  Google Scholar 

  10. Haulica I et al. (2003) Biphasic effects of angiotensin (1–7) and its interactions with angiotensin II in rat aorta. J Renin Angiotensin Aldosterone Syst 4: 124–128

    CAS  PubMed  Google Scholar 

  11. Brosnihan KB et al. (2004) Enhanced expression of Ang-(1–7) during pregnancy. Braz J Med Biol Res 37: 1255–1262

    CAS  PubMed  Google Scholar 

  12. Tallant EA et al. (2005) Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 289: H1560–H1566

    CAS  PubMed  Google Scholar 

  13. Yoshida M et al. (2002) L-158,809 and (D-Ala(7))-angiotensin I/II (1–7) decrease PAI-1 release from human umbilical vein endothelial cells. Thromb Res 105: 531–536

    CAS  PubMed  Google Scholar 

  14. Santos RA et al. (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor mas. Proc Natl Acad Sci USA 100: 8258–8263

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rice GI et al. (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383: 45–51

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Velez JC et al. (2007) Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 293: F398–F407

    CAS  PubMed  Google Scholar 

  17. Ardaillou R and Chansel D (1997) Synthesis and effects of active fragments of angiotensin II. Kidney Int 52: 1458–1468

    CAS  PubMed  Google Scholar 

  18. Dharmani M et al. (2005) Effect of des-aspartate-angiotensin I on the actions of angiotensin II in the isolated renal and mesenteric vasculature of hypertensive and STZ-induced diabetic rats. Regul Pept 129: 213–219

    CAS  PubMed  Google Scholar 

  19. Campbell WB et al. (1977) (Des-Asp1) angiotensin I: a study of its pressor and steroidogenic activities in conscious rats. Endocrinology 100: 46–51

    CAS  PubMed  Google Scholar 

  20. Plovsing RR et al. (2003) Effects of truncated angiotensins in humans after double blockade of the renin system. Am J Physiol Regul Integr Comp Physiol 285: R981–R991

    CAS  PubMed  Google Scholar 

  21. Cesari M et al. (2002) Biological properties of the angiotensin peptides other than angiotensin II: implications for hypertension and cardiovascular diseases. J Hypertens 20: 793–799

    CAS  PubMed  Google Scholar 

  22. Goto Y et al. (2006) Enzymatic properties of human aminopeptidase A: regulation of its enzymatic activity by calcium and angiotensin IV. J Biol Chem 281: 23503–23513

    CAS  PubMed  Google Scholar 

  23. Carrera MP et al. (2006) Renin-angiotensin system-regulating aminopeptidase activities are modified in the pineal gland of rats with breast cancer induced by N-methyl-nitrosourea. Cancer Invest 24: 149–153

    CAS  PubMed  Google Scholar 

  24. Nguyen G (2007) The (pro)renin receptor: pathophysiological roles in cardiovascular and renal pathology. Curr Opin Nephrol Hypertens 16: 129–133

    CAS  PubMed  Google Scholar 

  25. Atiyeh BA et al. (1995) In vitro production of angiotensin II by isolated glomeruli. Am J Physiol Renal Physiol 268: F266–F272

    CAS  Google Scholar 

  26. Navar LG and Nishiyama A (2004) Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens 13: 107–115

    CAS  PubMed  Google Scholar 

  27. Schalekamp MA and Danser AH (2006) Angiotensin II production and distribution in the kidney—II. Model-based analysis of experimental data. Kidney Int 69: 1553–1557

    CAS  PubMed  Google Scholar 

  28. Navar LG et al. (1994) Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol 5: 1153–1158

    CAS  PubMed  Google Scholar 

  29. Seikaly MG et al. (1990) Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest 86: 1352–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishiyama A et al. (2002) Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension 39: 129–134

    CAS  PubMed  Google Scholar 

  31. Franco M et al. (2007) Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol 293: R251–R256

    CAS  PubMed  Google Scholar 

  32. Hollenberg NK (2000) Implications of species difference for clinical investigation: studies on the renin-angiotensin system. Hypertension 35: 150–154

    CAS  PubMed  Google Scholar 

  33. Campbell DJ et al. (1991) Differential regulation of angiotensin peptide levels in plasma and kidney of the rat. Hypertension 18: 763–773

    CAS  PubMed  Google Scholar 

  34. Singh R et al. (2003) Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol 14: 873–880

    CAS  PubMed  Google Scholar 

  35. Ingelfinger JR et al. (1990) In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule: an hypothesis for the intrarenal renin angiotensin system. J Clin Invest 85: 417–423

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gomez RA et al. (1988) Renin and angiotensinogen gene expression in maturing rat kidney. Am J Physiol 254: F582–F587

    CAS  PubMed  Google Scholar 

  37. Kobori H et al. (2005) Enhanced intrarenal angiotensinogen contributes to early renal injury in spontaneously hypertensive rats. J Am Soc Nephrol 16: 2073–2080

    CAS  PubMed  Google Scholar 

  38. Singh R et al. (2005) A novel mechanism for angiotensin II formation in streptozotocin-diabetic rat glomeruli. Am J Physiol Renal Physiol 288: F1183–F1190

    CAS  PubMed  Google Scholar 

  39. Navar LG et al. (1995) Enhancement of intrarenal angiotensin II levels in 2 kidney 1 clip and angiotensin II induced hypertension. Blood Pressure Suppl 2: 88–92

    CAS  Google Scholar 

  40. Sachetelli S et al. (2006) RAS blockade decreases blood pressure and proteinuria in transgenic mice overexpressing rat angiotensinogen gene in the kidney. Kidney Int 69: 1016–1023

    CAS  PubMed  Google Scholar 

  41. Liu F et al. (2008) Overexpression of angiotensinogen increases tubular apoptosis in diabetes. J Am Soc Nephrol 19: 269–280

    PubMed  PubMed Central  Google Scholar 

  42. Price DA et al. (1999) The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol 10: 2382–2391

    CAS  PubMed  Google Scholar 

  43. Suzaki Y et al. (2006) Quantification of human angiotensinogen by a novel sandwich ELISA. Peptides 27: 3000–3002

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Durvasula RV and Shankland SJ (2008) Activation of a local renin angiotensin system in podocytes by glucose. Am J Physiol Renal Physiol 294: F830–F839

    CAS  PubMed  Google Scholar 

  45. Neves FA et al. (1996) Cathepsin B is a prorenin processing enzyme. Hypertension 27: 514–517

    CAS  PubMed  Google Scholar 

  46. Siragy HM et al. (2005) Angiotensin subtype-2 receptors inhibit renin biosynthesis and angiotensin II formation. Hypertension 45: 133–137

    CAS  PubMed  Google Scholar 

  47. Deinum J et al. (1999) Increase in serum prorenin precedes onset of microalbuminuria in patients with insulin-dependent diabetes mellitus [German]. Diabetologia 42: 1006–1010

    CAS  PubMed  Google Scholar 

  48. Klar J et al. (2004) Aldosterone enhances renin gene expression in juxtaglomerular cells. Am J Physiol Renal Physiol 286: F349–F355

    CAS  PubMed  Google Scholar 

  49. Nguyen G et al. (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109: 1417–1427

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Batenburg WW et al. (2007) Prorenin is the endogenous agonist of the (pro)renin receptor: binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens 25: 2441–2453

    CAS  PubMed  Google Scholar 

  51. Huang Y et al. (2006) Renin increases mesangial cell transforming growth factor-β1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69: 105–113

    CAS  PubMed  Google Scholar 

  52. Ichihara A et al. (2008) Involvement of (pro)renin receptor in the glomerular filtration barrier. J Mol Med 86: 629–635

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Krebs C et al. (2007) Antihypertensive therapy upregulates renin and (pro)renin receptor in the clipped kidney of Goldblatt hypertensive rats. Kidney Int 72: 725–730

    CAS  PubMed  Google Scholar 

  54. Ichihara A et al. (2004) Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest 114: 1128–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Azizi M (2006) Renin inhibition. Curr Opin Nephrol Hypertens 15: 505–510

    CAS  PubMed  Google Scholar 

  56. Stanton A et al. (2003) Blood pressure lowering in essential hypertension with an oral renin inhibitor, aliskiren. Hypertension 42: 1137–1143

    CAS  PubMed  Google Scholar 

  57. Feldman DL et al. (2008) Effects of aliskiren on blood pressure, albuminuria, and (pro)renin receptor expression in diabetic TG(mRen-2)27 rats. Hypertension 52: 130–136

    CAS  PubMed  Google Scholar 

  58. Parving HH et al. (2008) Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 358: 2433–2446

    CAS  PubMed  Google Scholar 

  59. Pilz B et al. (2005) Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in double-transgenic rats. Hypertension 46: 569–576

    CAS  PubMed  Google Scholar 

  60. Luft FC and Weinberger MH (2008) Antihypertensive therapy with aliskiren. Kidney Int 73: 679–683

    CAS  PubMed  Google Scholar 

  61. Segall L et al. (2007) Direct renin inhibitors: the dawn of a new era, or just a variation on a theme. Nephrol Dial Transplant 22: 2435–2439

    PubMed  Google Scholar 

  62. Anderson S et al. (1993) Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations. Am J Physiol Renal Physiol 265: F477–F486

    CAS  Google Scholar 

  63. Vidotti DB et al. (2004) High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol Renal Physiol 286: F1039–F1045

    CAS  PubMed  Google Scholar 

  64. Pisitkun T et al. (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101: 13368–13373

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mizuiri S et al. (1998) Renal ACE immunohistochemical localization in NIDDM patients with nephropathy. Am J Kidney Dis 31: 301–307

    CAS  PubMed  Google Scholar 

  66. Yoo TH et al. (2007) Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int 71: 1019–1027

    CAS  PubMed  Google Scholar 

  67. Miyake-Ogawa C et al. (2005) Tissue-specific expression of renin-angiotensin system components in IgA nephropathy. Am J Nephrol 25: 1–12

    CAS  PubMed  Google Scholar 

  68. Kliem V et al. (1996) Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int 49: 666–678

    CAS  PubMed  Google Scholar 

  69. Lee FT et al. (2004) Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J Am Soc Nephrol 15: 2139–2151

    CAS  PubMed  Google Scholar 

  70. Ye M et al. (2006) Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 17: 3067–3075

    CAS  PubMed  Google Scholar 

  71. Wysocki J et al. (2006) ACE and ACE2 activity in diabetic mice. Diabetes 55: 2132–2139

    CAS  PubMed  Google Scholar 

  72. Lew RA et al. (2008) Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Exp Physiol 93: 685–693

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Warner FJ et al. (2005) Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. J Biol Chem 280: 39353–39362

    CAS  PubMed  Google Scholar 

  74. Lely AT et al. (2004) Renal ACE2 expression in human kidney disease. J Pathol 204: 587–593

    CAS  PubMed  Google Scholar 

  75. Gurley SB et al. (2006) Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 116: 2218–2225

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Soler MJ et al. (2007) ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int 72: 614–623

    CAS  PubMed  Google Scholar 

  77. Wong DW et al. (2007) Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol 171: 438–451

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mizuiri S et al. (2008) Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am J Kidney Dis 51: 613–623

    CAS  PubMed  Google Scholar 

  79. Kohlstedt K et al. (2005) Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. Hypertension 45: 126–132

    CAS  PubMed  Google Scholar 

  80. Murakami M et al. (1997) Role of angiotensin II generated by angiotensin converting enzyme-independent pathways in canine kidney. Kidney Int Suppl 63: S132–S135

    CAS  PubMed  Google Scholar 

  81. Wei CC et al. (2002) Differential ANG II generation in plasma and tissue of mice with decreased expression of the ACE gene. Am J Physiol Heart Circ Physiol 282: H2254–H2258

    CAS  PubMed  Google Scholar 

  82. Liebau MC et al. (2006) Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal Physiol 290: F710–F719

    CAS  PubMed  Google Scholar 

  83. Shaltout HA et al. (2007) Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. Am J Physiol Renal Physiol 292: F82–F91

    CAS  PubMed  Google Scholar 

  84. Huang XR et al. (2003) Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol 14: 1738–1747

    CAS  PubMed  Google Scholar 

  85. Sadjadi J et al. (2005) Angiotensin converting enzyme-independent angiotensin ii production by chymase is up-regulated in the ischemic kidney in renovascular hypertension. J Surg Res 127: 65–69

    CAS  PubMed  Google Scholar 

  86. Tokuyama H et al. (2002) Differential regulation of elevated renal angiotensin II in chronic renal ischemia. Hypertension 40: 34–40

    CAS  PubMed  Google Scholar 

  87. McPherson EA et al. (2004) Chymase-like angiotensin II-generating activity in end-stage human autosomal dominant polycystic kidney disease. J Am Soc Nephrol 15: 493–500

    CAS  PubMed  Google Scholar 

  88. Sanders JS et al. (2004) Renal expression of matrix metalloproteinases in human ANCA-associated glomerulonephritis. Nephrol Dial Transplant 19: 1412–1419

    CAS  PubMed  Google Scholar 

  89. Igic R et al. (2003) Localization of carboxypeptidase A-like enzyme in rat kidney. Peptides 24: 1237–1240

    CAS  PubMed  Google Scholar 

  90. Wolf G et al. (2000) Renal expression of aminopeptidase A in rats with two-kidney: one-clip hypertension. Nephrol Dial Transplant 15: 1935–1942

    CAS  PubMed  Google Scholar 

  91. Stange T et al. (1996) Immunoelectron microscopic single and double labelling of aminopeptidase N (CD 13) and dipeptidyl peptidase IV (CD 26). Acta Histochem 98: 323–331

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Troyanovskaya M et al. (1996) Expression of aminopeptidase A, an angiotensinase, in glomerular mesangial cells. Hypertension 27: 518–522

    CAS  PubMed  Google Scholar 

  93. Stefanovic V et al. (1992) Cell surface aminopeptidase A and N activities in human glomerular epithelial cells. Kidney Int 41: 1571–1580

    CAS  PubMed  Google Scholar 

  94. Mentzel S et al. (1997) Mouse glomerular epithelial cells in culture with features of podocytes in vivo express aminopeptidase A and angiotensinogen but not other components of the renin-angiotensin system. J Am Soc Nephrol 8: 706–719

    CAS  PubMed  Google Scholar 

  95. Bauer J et al. (1999) Quantification of conversion and degradation of circulating angiotensin in rats. Am J Physiol 277: R412–R418

    CAS  PubMed  Google Scholar 

  96. Danser AH et al. (1998) Angiotensin I-to-II conversion in the human renal vascular bed. J Hypertens 16: 2051–2056

    CAS  PubMed  Google Scholar 

  97. Nomura M et al. (2005) Possible involvement of aminopeptidase A in hypertension and renal damage in Dahl salt-sensitive rats. Am J Hypertens 18: 538–543

    CAS  PubMed  Google Scholar 

  98. Thaiss F et al. (1996) Angiotensinase A gene expression and enzyme activity in isolated glomeruli of diabetic rats [German]. Diabetologia 39: 275–280

    CAS  PubMed  Google Scholar 

  99. Song L and Healy DP (1999) Kidney aminopeptidase A and hypertension, part II: effects of angiotensin II. Hypertension 33: 746–752

    CAS  PubMed  Google Scholar 

  100. Mitsui T et al. (2003) Hypertension and angiotensin II hypersensitivity in aminopeptidase A-deficient mice. Mol Med 9: 57–62

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bodineau L et al. (2008) Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension. Hypertension 51: 1318–1325

    CAS  PubMed  Google Scholar 

  102. Landry C et al. (1993) Characterization of neutral endopeptidase 24.11 in dog glomeruli. Biochem J 291: 773–779

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Edwards RM et al. (1999) Distribution of neutral endopeptidase activity along the rat and rabbit nephron. Pharmacology 59: 45–50

    CAS  PubMed  Google Scholar 

  104. Li N et al. (2005) The role of angiotensin converting enzyme 2 in the generation of angiotensin 1–7 by rat proximal tubules. Am J Physiol Renal Physiol 288: F353–F362

    CAS  PubMed  Google Scholar 

  105. Debiec H et al. (2002) Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med 346: 2053–2060

    PubMed  Google Scholar 

  106. Li XC et al. (2007) Genetic deletion of AT1a receptors attenuates intracellular accumulation of ANG II in the kidney of AT1a receptor-deficient mice. Am J Physiol Renal Physiol 293: F586–F593

    CAS  PubMed  Google Scholar 

  107. Li XC et al. (2006) AT1 receptor-mediated accumulation of extracellular angiotensin II in proximal tubule cells: role of cytoskeleton microtubules and tyrosine phosphatases. Am J Physiol Renal Physiol 291: F375–F383

    CAS  PubMed  Google Scholar 

  108. Brown GP and Venuto RC (1988) Angiotensin II receptors in rabbit renal preglomerular vessels. Am J Physiol Renal Physiol 255: E16–E22

    CAS  Google Scholar 

  109. Lewis EJ et al. (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329: 1456–1462

    CAS  PubMed  Google Scholar 

  110. Brenner BM et al. (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345: 861–869

    CAS  PubMed  Google Scholar 

  111. Nakao N et al. (2003) Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): a randomised controlled trial. Lancet 361: 117–124

    CAS  PubMed  Google Scholar 

  112. Crowley SD et al. (2005) Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest 115: 1092–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Crowley SD et al. (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA 103: 17985–17990

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Siragy HM (2004) AT1 and AT2 receptor in the kidney: role in health and disease. Semin Nephrol 24: 93–100

    CAS  PubMed  Google Scholar 

  115. Ozono R et al. (1997) Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension 30: 1238–1246

    CAS  PubMed  Google Scholar 

  116. Hakam AC and Hussain T (2006) Angiotensin II AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway. Am J Physiol Renal Physiol 290: F1430–F1436

    CAS  PubMed  Google Scholar 

  117. Wang ZQ et al. (1999) Differential regulation of renal angiotensin subtype AT1A and AT2 receptor protein in rats with angiotensin-dependent hypertension. Hypertension 33: 96–101

    CAS  PubMed  Google Scholar 

  118. Sharma M et al. (1998) Documentation of angiotensin II receptors in glomerular epithelial cells. Am J Physiol Renal Physiol 274: F623–F627

    CAS  Google Scholar 

  119. Padia SH et al. (2008) Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. Hypertension 51: 460–465

    CAS  PubMed  Google Scholar 

  120. Padia SH et al. (2007) Intrarenal aminopeptidase N inhibition augments natriuretic responses to angiotensin III in angiotensin type 1 receptor-blocked rats. Hypertension 49: 625–630

    CAS  PubMed  Google Scholar 

  121. Wamberg C et al. (2003) Effects of different angiotensins during acute, double blockade of the renin system in conscious dogs. Am J Physiol Regul Integr Comp Physiol 285: R971–R980

    CAS  PubMed  Google Scholar 

  122. Hus-Citharel A et al. (1999) Aminopeptidase A activity and angiotensin III effects on [Ca2+]i along the rat nephron. Kidney Int 56: 850–859

    CAS  PubMed  Google Scholar 

  123. Pinheiro SV et al. (2004) Nonpeptide AVE 0991 is an angiotensin-(1–7) receptor Mas agonist in the mouse kidney. Hypertension 44: 490–496

    CAS  PubMed  Google Scholar 

  124. De Souza AM et al. (2004) Angiotensin II and angiotensin-(1–7) inhibit the inner cortex Na+ -ATPase activity through AT2 receptor. Regul Pept 120: 167–175

    CAS  PubMed  Google Scholar 

  125. Walters PE et al. (2005) Angiotensin-(1–7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 45: 960–966

    CAS  PubMed  Google Scholar 

  126. Stegbauer J et al. (2003) Effects of angiotensin-(1–7) and other bioactive components of the renin-angiotensin system on vascular resistance and noradrenaline release in rat kidney. J Hypertens 21: 1391–1399

    CAS  PubMed  Google Scholar 

  127. Ren Y et al. (2002) Vasodilator action of angiotensin-(1–7) on isolated rabbit afferent arterioles. Hypertension 39: 799–802

    CAS  PubMed  Google Scholar 

  128. van Rodijnen WF et al. (2002) Renal microvascular actions of angiotensin II fragments. Am J Physiol Renal Physiol 283: F86–F92

    CAS  PubMed  Google Scholar 

  129. van der Wouden EA et al. (2006) The role of angiotensin(1–7) in renal vasculature of the rat. J Hypertens 24: 1971–1978

    CAS  PubMed  Google Scholar 

  130. Magaldi AJ et al. (2003) Angiotensin-(1–7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflugers Arch 447: 223–230

    CAS  PubMed  Google Scholar 

  131. Handa RK et al. (2001) Autoradiographic analysis and regulation of angiotensin receptor subtypes AT(4), AT(1), and AT((1–7)) in the kidney. Am J Physiol Renal Physiol 281: F936–F947

    CAS  PubMed  Google Scholar 

  132. Li XC et al. (2006) AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am J Physiol Renal Physiol 290: F1024–F1033

    CAS  PubMed  Google Scholar 

  133. Kotlo K et al. (2007) Aminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells. Am J Physiol Renal Physiol 293: F1047–F1053

    CAS  PubMed  Google Scholar 

  134. Leong PK et al. (2006) Effects of ACE inhibition on proximal tubule sodium transport. Am J Physiol Renal Physiol 290: F854–F863

    CAS  PubMed  Google Scholar 

  135. Biollaz J et al. (1982) Antihypertensive therapy with MK 421: angiotensin II—renin relationships to evaluate efficacy of converting enzyme blockade. J Cardiovasc Pharmacol 4: 966–972

    CAS  PubMed  Google Scholar 

  136. Farquharson CA and Struthers AD (2002) Gradual reactivation over time of vascular tissue angiotensin I to angiotensin II conversion during chronic lisinopril therapy in chronic heart failure. J Am Coll Cardiol 39: 767–775

    CAS  PubMed  Google Scholar 

  137. Ferrario CM et al. (2005) Effects of renin-angiotensin system blockade on renal angiotensin-(1–7) forming enzymes and receptors. Kidney Int 68: 2189–2196

    CAS  PubMed  Google Scholar 

  138. Iyer SN et al. (1998) Angiotensin-(1–7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension 31: 356–361

    CAS  PubMed  Google Scholar 

  139. van der Wouden EA et al. (2005) Does angiotensin (1–7) contribute to the anti-proteinuric effect of ACE-inhibitors. J Renin Angiotensin Aldosterone Syst 6: 96–101

    CAS  PubMed  Google Scholar 

  140. van Kats JP et al. (1998) Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation 98: 73–81

    CAS  PubMed  Google Scholar 

  141. Allred AJ et al. (2000) Differential actions of renal ischemic injury on the intrarenal angiotensin system. Am J Physiol Renal Physiol 279: F636–F645

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr John R Raymond and Dr Michael G Janech for valuable discussions and collaborations. The author is supported by the Dialysis Clinics Inc. Paul Teschan Research Fund.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author has declared an association with the following company: Novartis Pharmaceuticals (speakers bureau: honoraria).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velez, J. The importance of the intrarenal renin–angiotensin system. Nat Rev Nephrol 5, 89–100 (2009). https://doi.org/10.1038/ncpneph1015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph1015

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing