Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: cell death in acute renal failure and emerging evidence for a protective role of erythropoietin

Abstract

Acute renal failure—characterized by a sudden loss of the ability of the kidneys to excrete nitrogenous waste, and to maintain electrolyte homeostasis and fluid balance—is a frequently encountered clinical problem, particularly in the intensive care unit. Unfortunately, advances in supportive interventions have done little to reduce the high mortality associated with this condition. Might erythropoietin (EPO) have utility as a therapeutic agent in acute renal failure? This hormone mediates anti-apoptotic effects in the bone marrow, facilitating maturation and differentiation of erythroid progenitors. New evidence indicates that EPO also exerts anti-apoptotic effects in the brain, heart and vasculature, which can limit the degree of organ damage. Here, we review the emerging biological role of EPO in the kidney and the pathophysiology of ischemia–reperfusion injury in an attempt to understand the therapeutic potential of EPO in acute renal failure.

Key Points

  • Erythropoietin (EPO) is produced in the kidney in response to hypoxia, and exerts anti-apoptotic effects in bone marrow, brain, heart and vasculature

  • Data from animal models indicate that EPO can protect the kidney when administered either before or after onset of an ischemic insult

  • Beneficial effects of EPO in human acute renal failure trials have not yet been detected

  • New EPO derivatives (e.g. carbamylated EPO and desialylated EPO) are more likely to be clinically applicable

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mechanism of anti-apoptotic effects of erythropoietin.
Figure 2: Pathophysiology of cell death in ischemic acute renal failure.

Similar content being viewed by others

References

  1. Lameire N et al. (2005) Acute renal failure. Lancet 365: 417–430

    Article  CAS  PubMed  Google Scholar 

  2. Nash K et al. (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39: 930–936

    Article  PubMed  Google Scholar 

  3. Mehta RL et al. (2004) Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int 66: 1613–1621

    Article  PubMed  Google Scholar 

  4. Cameron JS (1986) Acute renal failure—the continuing challenge. QJM 59: 337–338

    CAS  PubMed  Google Scholar 

  5. Thakar CV et al. (2003) ARF after open-heart surgery: Influence of gender and race. Am J Kidney Dis 41: 742–751

    Article  PubMed  Google Scholar 

  6. Rosen S et al. (2001) Difficulties in understanding human “acute tubular necrosis”: Limited data and flawed animal models. Kidney Int 60: 1220–1224

    Article  CAS  PubMed  Google Scholar 

  7. Hirschberg R et al. (1999) Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int 55: 2423–2432

    Article  CAS  PubMed  Google Scholar 

  8. Ding H et al. (1993) Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest 91: 2281–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maxwell PH et al. (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44: 1149–1162

    Article  CAS  PubMed  Google Scholar 

  10. Maxwell P (2003) HIF-1: an oxygen response system with special relevance to the kidney. J Am Soc Nephrol 14: 2712–2722

    Article  PubMed  Google Scholar 

  11. Cai Z et al. (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108: 79–85

    Article  CAS  PubMed  Google Scholar 

  12. Ruscher K et al. (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22: 10291–10301

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto M et al. (2003) Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J Am Soc Nephrol 14: 1825–1832

    Article  PubMed  Google Scholar 

  14. Nagai A et al. (2001) Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 60: 386–392

    Article  CAS  PubMed  Google Scholar 

  15. Bernaudin M et al. (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19: 643–651

    Article  CAS  PubMed  Google Scholar 

  16. Sakanaka M et al. (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95: 4635–4640

    Article  CAS  PubMed  Google Scholar 

  17. Grimm C et al. (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8: 718–724

    Article  CAS  PubMed  Google Scholar 

  18. Maiese K et al. (2004) Erythropoietin in the brain: can the promise to protect be fulfilled? Trends Pharmacol Sci 25: 577–583

    Article  CAS  PubMed  Google Scholar 

  19. Westenfelder C et al. (1999) Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney Int 55: 808–820

    Article  CAS  PubMed  Google Scholar 

  20. Witthuhn BA et al. (1993) JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74: 227–236

    Article  CAS  PubMed  Google Scholar 

  21. Fisher JW (2003) Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood) 228: 1–14

    Article  CAS  Google Scholar 

  22. HaseyamaY et al. (1999) Phosphatidylinositol 3-kinase is involved in the protection of primary cultured human erythroid precursor cells from apoptosis. Blood 94: 1568–1577

    CAS  PubMed  Google Scholar 

  23. Digicaylioglu M and Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 412: 641–647

    Article  CAS  PubMed  Google Scholar 

  24. Fishbane S et al. (2004) Cytoprotection by darbepoetin/epoetin α in pig tubular and mouse mesangial cells. Kidney Int 65: 452–458

    Article  CAS  PubMed  Google Scholar 

  25. Sutton TA et al. (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62: 1539–1549

    Article  CAS  PubMed  Google Scholar 

  26. Molitoris BA and Sutton TA (2004) Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int 66: 496–499

    Article  PubMed  Google Scholar 

  27. Brezis M and Rosen S (1995) Hypoxia of the renal medulla—its implications for disease. N Engl J Med 332: 647–655

    Article  CAS  PubMed  Google Scholar 

  28. Zager RA et al. (1990) Regional responses within the kidney to ischemia: assessment of adenine nucleotide and catabolite profiles. Biochim Biophys Acta 1035: 29–36

    Article  CAS  PubMed  Google Scholar 

  29. Dagher PC (2000) Modeling ischemia in vitro: selective depletion of adenine and guanine nucleotide pools. Am J Physiol Cell Physiol 279: C1270–C1277

    Article  CAS  PubMed  Google Scholar 

  30. Buhl MR (1979) The predictive value of 5′-adenine nucleotide depletion and replenishment in ischaemic rabbit kidney tissue. Int Urol Nephrol 11: 325–333

    Article  CAS  PubMed  Google Scholar 

  31. Feldenberg LR et al. (1999) Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. Am J Physiol 276: F837–F846

    CAS  PubMed  Google Scholar 

  32. Dagher PC (2004) Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int 66: 506–509

    Article  CAS  PubMed  Google Scholar 

  33. Edelstein CL et al. (1995) The role of cysteine proteases in hypoxia-induced rat renal proximal tubular injury. Proc Natl Acad Sci USA 92: 7662–7666

    Article  CAS  PubMed  Google Scholar 

  34. Molitoris BA et al. (1992) Cytoskeleton disruption and apical redistribution of proximal tubule Na(+)-K(+)-ATPase during ischemia. Am J Physiol 263: F488–F495

    CAS  PubMed  Google Scholar 

  35. Zuk A et al. (1998) Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol 275: C711–C731

    Article  CAS  PubMed  Google Scholar 

  36. Nath KA and Norby SM (2000) Reactive oxygen species and acute renal failure. Am J Med 109: 665–678

    Article  CAS  PubMed  Google Scholar 

  37. Noiri E et al. (2001) Oxidative and nitrosative stress in acute renal failure. Am J Physiol Renal Physiol 281: F948–957

    Article  CAS  PubMed  Google Scholar 

  38. Lieberthal W et al. (1998) Necrosis and apoptosis in acute renal failure. Semin Nephrol 18: 505–518

    CAS  PubMed  Google Scholar 

  39. Castaneda MP et al. (2003) Activation of mitochondrial apoptotic pathways in human renal allografts after ischemia-reperfusion injury. Transplantation 76: 50–54

    Article  CAS  PubMed  Google Scholar 

  40. Daemen MA et al. (2002) Apoptosis and inflammation in renal reperfusion injury. Transplantation 73: 1693–1700

    Article  CAS  PubMed  Google Scholar 

  41. Kaushal GP et al. (1998) Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am J Physiol 274: F587–F595

    CAS  PubMed  Google Scholar 

  42. Singh AB et al. (2002) Cloning and expression of rat caspase-6 and its localization in renal ischemia/reperfusion injury. Kidney Int 62: 106–115

    Article  CAS  PubMed  Google Scholar 

  43. Feldenberg LR et al. (1999) Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. Am J Physiol 276: F837–F846

    CAS  PubMed  Google Scholar 

  44. Daemen MA et al. (1999) Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 104: 541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daemen MA et al. (2001) Apoptosis and chemokine induction after renal ischemia-reperfusion. Transplantation 71: 1007–1011

    Article  CAS  PubMed  Google Scholar 

  46. Yang CW et al. (2003) Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J 17: 1754–1755

    Article  CAS  PubMed  Google Scholar 

  47. Vesey DA et al. (2004) Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant 19: 348–355

    Article  CAS  PubMed  Google Scholar 

  48. Sharples EJ et al. (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15: 2115–2124

    Article  CAS  PubMed  Google Scholar 

  49. Huang C et al. (1992) Study of the actions of human recombinant erythropoietin on rat renal haemodynamics. Clin Sci (Lond) 83: 453–459

    Article  CAS  Google Scholar 

  50. Abdelrahman M et al. (2004) Erythropoietin attenuates the tissue injury associated with haemorrhagic shock and myocardial ischaemia. Shock 22: 63–69

    Article  CAS  PubMed  Google Scholar 

  51. Lieberthal W et al. (1989) Renal ischemia and reperfusion impair endothelium-dependent vascular relaxation. Am J Physiol 256: F894–F900

    CAS  PubMed  Google Scholar 

  52. Conger JD et al. (1995) Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasoconstrictors in postischaemic acute renal failure in rats. J Clin Invest 96: 631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamamoto T et al. (2002) Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Renal Physiol 282: F1150–F1155

    Article  CAS  PubMed  Google Scholar 

  54. Brodsky SV et al. (2002) Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282: F1140–F1149

    Article  CAS  PubMed  Google Scholar 

  55. Chong ZZ et al. (2002) Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106: 2973–2979

    Article  CAS  PubMed  Google Scholar 

  56. Kanagy NL et al. (2003) Erythropoietin administration in vivo increases vascular nitric oxide synthase expression. J Cardiovasc Pharmacol 42: 527–533

    Article  CAS  PubMed  Google Scholar 

  57. Scalera F et al. (2005) Erythropoietin increases asymmetric dimethylarginine in endothelial cells: role of dimethylarginine dimethylaminohydrolase. J Am Soc Nephrol 16: 892–898

    Article  CAS  PubMed  Google Scholar 

  58. Buemi M et al. (2004) Recombinant human erythropoietin stimulates angiogenesis and healing of ischemic skin wounds. Shock 22: 169–173

    Article  CAS  PubMed  Google Scholar 

  59. Heeschen C et al. (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 15: 1340–1346

    Article  CAS  Google Scholar 

  60. Bahlmann FH et al. (2003) Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int 64: 1648–1652

    Article  CAS  PubMed  Google Scholar 

  61. Patel NS et al. (2004) Pretreatment with EPO reduces the injury and dysfunction caused by ischemia/reperfusion in the mouse kidney in vivo. Kidney Int 66: 983–989

    Article  CAS  PubMed  Google Scholar 

  62. Goligorsky MS (2005) Whispers and shouts in the pathogenesis of acute renal ischaemia. Nephrol Dial Transplant 20: 261–266

    Article  PubMed  Google Scholar 

  63. Friedewald JJ and Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66: 486–491

    Article  PubMed  Google Scholar 

  64. De Greef KE et al. (2003) ICAM-1 expression and leukocyte accumulation in inner stripe of outer medulla in early phase of ischemic compared to HgCl2-induced ARF. Kidney Int 63: 1697–1707

    Article  CAS  PubMed  Google Scholar 

  65. Chakravorty SJ et al. (2002) Fractalkine expression on human renal tubular epithelial cells: potential role in mononuclear cell adhesion. Clin Exp Immunol 129: 150–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Daha MR and van Kooten C (2000) Is the proximal tubular cell a proinflammatory cell? Nephrol Dial Transplant 15 (Suppl 6): S41–S43

    Article  Google Scholar 

  67. Ysebaert DK et al. (2000) Identification and kinetics of leukocytes after severe ischemia/reperfusion renal injury. Nephrol Dial Transplant 15: 1562–1574

    Article  CAS  PubMed  Google Scholar 

  68. De Greef KE et al. (1998) Neutrophils and acute ischemia-reperfusion injury. J Nephrol 11: 110–122

    CAS  PubMed  Google Scholar 

  69. Kelly KJ et al. (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci USA 91: 812–816

    Article  CAS  PubMed  Google Scholar 

  70. Friedewald JJ and Rabb H (2004) Inflammatory cells in ischaemic acute renal failure. Kidney Int 66: 480–485

    Article  Google Scholar 

  71. Pull SL et al. (2005) Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 102: 99–104

    Article  CAS  PubMed  Google Scholar 

  72. Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14 (Suppl 1): S55–S61

    Article  PubMed  Google Scholar 

  73. Witzgall R et al. (1994) Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93: 2175–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maeshima A et al. (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14: 3138–3146

    Article  PubMed  Google Scholar 

  75. Arriero M et al. (2004) Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am J Physiol Renal Physiol 287: F621–627

    Article  CAS  PubMed  Google Scholar 

  76. Lin F et al. (2003) Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 14: 1188–1199

    Article  PubMed  Google Scholar 

  77. Nygren JM et al. (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10: 494–501

    Article  CAS  PubMed  Google Scholar 

  78. Togel F et al. (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289: F31–F42

    Article  PubMed  CAS  Google Scholar 

  79. Vaziri ND et al. (1994) Erythropoietin enhances recovery from cisplatin-induced acute renal failure. Am J Physiol 266: F360–F366

    Article  CAS  PubMed  Google Scholar 

  80. Leist M et al. (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305: 239–242

    Article  CAS  PubMed  Google Scholar 

  81. Fiordaliso F et al. (2005) A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc Natl Acad Sci USA 102: 2046–2051

    Article  CAS  PubMed  Google Scholar 

  82. Brines M et al. (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA 101: 14907–14912

    Article  CAS  PubMed  Google Scholar 

  83. Jubinsky PT et al. (1993) A low-affinity human granulocyte-macrophage colony-stimulating factor/murine erythropoietin hybrid receptor functions in murine cell lines. Blood 81: 587–591

    CAS  PubMed  Google Scholar 

  84. Namiuchi S et al. (2005) High serum erythropoietin level is associated with smaller infarct size in patients with acute myocardial infarction who undergo successful primary percutaneous coronary intervention. J Am Coll Cardiol 45: 1406–1412

    Article  CAS  PubMed  Google Scholar 

  85. Ehrenreich H et al. (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8: 495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bahlmann FH et al. (2004) Low-dose therapy with the long-acting erythropoietin analogue darbepoetin α persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 110: 1006–1012

    Article  CAS  PubMed  Google Scholar 

  87. Stohlawetz PJ et al. (2000) Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood 95: 2983–2989

    CAS  PubMed  Google Scholar 

  88. Singbartl K et al. (2000) Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin. Crit Care Med 28: 2507–2514

    Article  CAS  PubMed  Google Scholar 

  89. Henke M et al. (2003) Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 362: 1255–1260

    Article  CAS  PubMed  Google Scholar 

  90. Sigounas G et al. (2004) Erythropoietin modulates the anticancer activity of chemotherapeutic drugs in a murine lung cancer model. Cancer Lett 214: 171–179

    Article  CAS  PubMed  Google Scholar 

  91. Gong H et al. (2004) EPO and alpha-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int 66: 683–695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EJ Sharples is supported by a training fellowship from the National Kidney Research Fund (TF17/2004). C Thiemermann is supported in part by the William Harvey Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J Sharples.

Ethics declarations

Competing interests

MM Yaqoob has received research support from Amgen and Roche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharples, E., Thiemermann, C. & Yaqoob, M. Mechanisms of Disease: cell death in acute renal failure and emerging evidence for a protective role of erythropoietin. Nat Rev Nephrol 1, 87–97 (2005). https://doi.org/10.1038/ncpneph0042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing