Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney

Abstract

Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia–reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.

Key points

  • Multiple cell death pathways contribute to the pathogenesis of acute and chronic kidney injury; ferroptosis is one such mechanism of regulated necrotic cell death, characterized by marked oxidation of phospholipids containing polyunsaturated fatty acids.

  • Ferroptotic death programs are triggered in cells with dysregulated iron and thiol redox metabolism, leading to robust but selective lipid peroxidation, which is propagated through enzymatic and non-enzymatic mechanisms.

  • The excessive accumulation of hydroperoxy-derivatives of arachidonoyl- and adrenoyl-phosphatidylethanolamines is catalysed by a complex of 15-lipoxygenase with phosphatidylethanolamine-binding protein 1 and represents a potential therapeutic target.

  • GPX4 detoxifies phospholipid hydroperoxides to non-toxic phospholipid alcohols using glutathione as a source of reducing equivalents, thus preventing ferroptotic cell death.

  • iNOS, NO, Ca2+-independent phospholipase A2β and FSP1 can eliminate ferroptotic lipid peroxidation products and prevent ferroptosis in cells that lack GPX4 catalytic activity.

  • Increased levels of urinary ferroptotic phospholipid hydroperoxides are associated with non-recovery of kidney function in patients with acute kidney injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three pillars of the canonical ferroptosis pathway.
Fig. 2: Major pathways involved in the generation of pro-ferroptotic and anti-ferroptotic reactive radical intermediates.
Fig. 3: Systemic iron handling and regulation.
Fig. 4: Handling of intracellular iron and its role in ferroptosis.
Fig. 5: PUFA glycerophospholipids and their mechanisms of peroxidation.
Fig. 6: Metabolic network of major pathways involved in the execution and regulation of ferroptosis.
Fig. 7: Thiol metabolism and ferroptosis.

Similar content being viewed by others

References

  1. Green, D. R. The coming decade of cell death research: five riddles. Cell 177, 1094–1107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kerr, J. F. History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182, 471–474 (2002).

    Article  PubMed  Google Scholar 

  3. Laster, S. M., Wood, J. G. & Gooding, L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629–2634 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiernicki, B. et al. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis. 11, 922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poulianiti, K. P. et al. Systemic redox imbalance in chronic kidney disease: a systematic review. Oxid. Med. Cell Longev. 2016, 8598253 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Otasevic, V., Vucetic, M., Grigorov, I., Martinovic, V. & Stancic, A. Ferroptosis in different pathological contexts seen through the eyes of mitochondria. Oxid. Med. Cell Longev. 2021, 5537330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Riegman, M. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 22, 1042–1048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Swelm, R. P. L., Wetzels, J. F. M. & Swinkels, D. W. The multifaceted role of iron in renal health and disease. Nat. Rev. Nephrol. 16, 77–98 (2020).

    Article  PubMed  Google Scholar 

  13. Stoyanovsky, D. A. et al. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free. Radic. Biol. Med. 133, 153–161 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Lai, C. S. & Piette, L. H. Spin-trapping studies of hydroxyl radical production involved in lipid peroxidation. Arch. Biochem. Biophys. 190, 27–38 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Leaf, D. E. & Swinkels, D. W. Catalytic iron and acute kidney injury. Am. J. Physiol. Renal Physiol. 311, F871–F876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lane, D. J., Robinson, S. R., Czerwinska, H., Bishop, G. M. & Lawen, A. Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem. J. 432, 123–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Fuqua, B. K. et al. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS One 9, e98792 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Swaminathan, S. Iron homeostasis pathways as therapeutic targets in acute kidney injury. Nephron 140, 156–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Ramey, G. et al. Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95, 501–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, Y., Alfaro-Magallanes, V. M. & Babitt, J. L. Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders. Br. J. Haematol. 193, 882–893 (2021).

    Article  PubMed  Google Scholar 

  21. Pinto, J. P. et al. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPα. Blood 111, 5727–5733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kautz, L. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46, 678–684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Coillie, S. et al. Targeting ferroptosis protects against experimental (multi)organ dysfunction and death. Nat. Commun. 13, 1046 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hvidberg, V. et al. Identification of the receptor scavenging hemopexin-heme complexes. Blood 106, 2572–2579 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen, M. J., Andersen, C. B. F. & Moestrup, S. K. CD163 binding to haptoglobin-hemoglobin complexes involves a dual-point electrostatic receptor-ligand pairing. J. Biol. Chem. 288, 18834–18841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drakesmith, H., Nemeth, E. & Ganz, T. Ironing out ferroportin. Cell Metab. 22, 777–787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Philpott, C. C. Coming into view: eukaryotic iron chaperones and intracellular iron delivery. J. Biol. Chem. 287, 13518–13523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lawson, D. M. et al. Identification of the ferroxidase centre in ferritin. FEBS Lett. 254, 207–210 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, H. et al. Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood 103, 3933–3939 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Ito, F., Kato, K., Yanatori, I., Murohara, T. & Toyokuni, S. Ferroptosis-dependent extracellular vesicles from macrophage contribute to asbestos-induced mesothelial carcinogenesis through loading ferritin. Redox Biol. 47, 102174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Namgaladze, D., Fuhrmann, D. C. & Brune, B. Interplay of Nrf2 and BACH1 in inducing ferroportin expression and enhancing resistance of human macrophages towards ferroptosis. Cell Death Discov. 8, 327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fuhrmann, D. C., Mondorf, A., Beifuss, J., Jung, M. & Brune, B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36, 101670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohgami, R. S., Campagna, D. R., McDonald, A. & Fleming, M. D. The Steap proteins are metalloreductases. Blood 108, 1388–1394 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, C.-Y. et al. ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J. Biol. Chem. 287, 34032–34043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kozyraki, R. et al. Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc. Natl Acad. Sci. USA 98, 12491–12496 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jenkitkasemwong, S., Wang, C.-Y., Mackenzie, B. & Knutson, M. D. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals 25, 643–655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haldar, S. et al. Prion protein promotes kidney iron uptake via its ferrireductase activity. J. Biol. Chem. 290, 5512–5522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin, J. et al. Machine learning classifies ferroptosis and apoptosis cell death modalities with TfR1 immunostaining. ACS Chem. Biol. 17, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hider, R. C. & Kong, X. Iron speciation in the cytosol: an overview. Dalton Trans. 42, 3220–3229 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Hider, R. C. & Kong, X. L. Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24, 1179–1187 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Patel, S. J. et al. A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat. Chem. Biol. 15, 872–881 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Philpott, C. C., Ryu, M.-S., Frey, A. & Patel, S. Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J. Biol. Chem. 292, 12764–12771 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi, H., Bencze, K. Z., Stemmler, T. L. & Philpott, C. C. A cytosolic iron chaperone that delivers iron to ferritin. Science 320, 1207–1210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leidgens, S. et al. Each member of the Poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J. Biol. Chem. 288, 17791–17802 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frey, A. G. et al. Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase. Proc. Natl Acad. Sci. USA 111, 8031–8036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nandal, A. et al. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab. 14, 647–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McCullough, K. & Bolisetty, S. Ferritins in kidney disease. Semin. Nephrol. 40, 160–172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, X. et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol. Trace Elem. Res. 200, 298–307 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, P. et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 12, 447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santambrogio, P. et al. Mitochondrial ferritin expression in adult mouse tissues. J. Histochem. Cytochem. 55, 1129–1137 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yanatori, I., Richardson, D. R., Imada, K. & Kishi, F. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2*. J. Biol. Chem. 291, 17303–17318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Imoto, S. et al. Labile iron, ROS, and cell death are prominently induced by haemin, but not by non-transferrin-bound iron. Transfus. Apher. Sci. 61, 103319 (2022).

    Article  PubMed  Google Scholar 

  59. Norden, A. G. W. et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int. 60, 1885–1892 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Prinsen, B. et al. Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. J. Am. Soc. Nephrol. 12, 1017–1025 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Raaij, S. E. G. V. et al. Iron handling by the human kidney: glomerular filtration and tubular reabsorption both contribute to urinary iron excretion. Am. J. Physiol. Renal Physiol. 316, F606–F614 (2019).

    Article  PubMed  Google Scholar 

  62. Jaszai, J. et al. Prominin-2 is a novel marker of distal tubules and collecting ducts of the human and murine kidney. Histochem. Cell Biol. 133, 527–539 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Brown, C. W. et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell 51, 575–586 e574 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Macdougall, I. C. Intravenous iron therapy in patients with chronic kidney disease: recent evidence and future directions. Clin. Kidney J. 10, i16–i24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Portoles, J., Martin, L., Broseta, J. J. & Cases, A. Anemia in chronic kidney disease: from pathophysiology and current treatments, to future agents. Front. Med. 8, 642296 (2021).

    Article  Google Scholar 

  66. McMurray, J. et al. Kidney disease: Improving global outcomes (KDIGO) anemia work group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int. Suppl. 2, 279–335 (2012).

    Google Scholar 

  67. Locatelli, F. et al. Anaemia management in patients with chronic kidney disease: a position statement by the anaemia working group of European Renal Best Practice (ERBP). Nephrol. Dial. Transplant. 24, 348–354 (2008).

    Article  PubMed  Google Scholar 

  68. Gupta, N. & Wish, J. B. Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for anemia in patients with CKD. Am. J. Kidney Dis. 69, 815–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Li, X. et al. Pretreatment with roxadustat (FG-4592) attenuates folic acid-induced kidney injury through antiferroptosis via Akt/GSK-3β/Nrf2 pathway. Oxid. Med. Cell Longev. 2020, 6286984 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Ho, J. et al. Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopulmonary bypass: a nested case-control study. Am. J. Kidney Dis. 53, 584–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Prowle, J. R. et al. Greater increase in urinary hepcidin predicts protection from acute kidney injury after cardiopulmonary bypass. Nephrol. Dial. Transpl. 27, 595–602 (2012).

    Article  CAS  Google Scholar 

  72. Scindia, Y. et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J. Am. Soc. Nephrol. 26, 2800–2814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van Swelm, R. P. et al. Renal handling of circulating and renal-synthesized hepcidin and its protective effects against hemoglobin-mediated kidney injury. J. Am. Soc. Nephrol. 27, 2720–2732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brown, R. J. & Gray, J. D. The mechanism of acute ferrous sulphate poisoning. Can. Med. Assoc. J. 73, 192–197 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sochaski, M. A. et al. Lipid peroxidation and protein modification in a mouse model of chronic iron overload. Metabolism 51, 645–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Valerio, L. G. & Petersen, D. R. Characterization of hepatic iron overload following dietary administration of dicyclopentadienyl iron (Ferrocene) to mice: cellular, biochemical, and molecular aspects. Exp. Mol. Pathol. 68, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Kozlov, A. V. et al. ‘Free’ iron, as detected by electron paramagnetic resonance spectroscopy, increases unequally in different tissues during dietary iron overload in the rat. Biometals 9, 98–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Burns, D. L. & Pomposelli, J. J. Toxicity of parenteral iron dextran therapy. Kidney Int. Suppl. 69, S119–S124 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  80. Protchenko, O. et al. Iron chaperone poly rc binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology 73, 1176–1193 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Arosio, P., Ingrassia, R. & Cavadini, P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta 1790, 589–599 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Ferreira, C. et al. Early embryonic lethality of H ferritin gene deletion in mice. J. Biol. Chem. 275, 3021–3024 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Zarjou, A. et al. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J. Clin. Invest. 123, 4423–4434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hatcher, H. C., Tesfay, L., Torti, S. V. & Torti, F. M. Cytoprotective effect of ferritin H in renal ischemia reperfusion injury. PLoS One 10, e0138505 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zille, M. et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke 48, 1033–1043 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).

    Article  PubMed  Google Scholar 

  87. Zhang, X. et al. Ferroptosis promotes cyst growth in autosomal dominant polycystic kidney disease mouse models. J. Am. Soc. Nephrol. 32, 2759–2776 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ide, S. et al. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. Elife https://doi.org/10.7554/eLife.68603 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wagner, B. A., Buettner, G. R. & Burns, C. P. Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry 33, 4449–4453 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Shchepinov, M. S. Polyunsaturated fatty acid deuteration against neurodegeneration. Trends Pharmacol. Sci. 41, 236–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Kuhn, H., Banthiya, S. & van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 1851, 308–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Shintoku, R. et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108, 2187–2194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, e626 (2017).

    Article  Google Scholar 

  96. Lamade, A. M. et al. Inactivation of RIP3 kinase sensitizes to 15LOX/PEBP1-mediated ferroptotic death. Redox Biol. 50, 102232 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shah, R., Shchepinov, M. S. & Pratt, D. A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Anthonymuthu, T. S. et al. Empowerment of 15-lipoxygenase catalytic competence in selective oxidation of membrane ETE-PE to ferroptotic death signals, HpETE-PE. J. Am. Chem. Soc. 140, 17835–17839 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chu, B. et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol. 21, 579–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dar, H. H. et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J. Clin. Invest. 128, 4639–4653 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kim, S. et al. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis. 12, 160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martin-Saiz, L. et al. Ferrostatin-1 modulates dysregulated kidney lipids in acute kidney injury. J. Pathol. 257, 285–299 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Tonnus, W. & Meyer, C. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury. Nat. Commun. 12, 4402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Anthonymuthu, T. S. et al. Resolving the paradox of ferroptotic cell death: ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis. Redox Biol. 38, 101744 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Davydov, R., Gilep, A. A., Strushkevich, N. V., Usanov, S. A. & Hoffman, B. M. Compound I is the reactive intermediate in the first monooxygenation step during conversion of cholesterol to pregnenolone by cytochrome P450scc: EPR/ENDOR/cryoreduction/annealing studies. J. Am. Chem. Soc. 134, 17149–17156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Codreanu, S. G. & Liebler, D. C. Novel approaches to identify protein adducts produced by lipid peroxidation. Free. Radic. Res. 49, 881–887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Bayir, H. et al. Achieving life through death: redox biology of lipid peroxidation in ferroptosis. Cell Chem. Biol. 27, 387–408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Farmer, L. A. et al. Intrinsic and extrinsic limitations to the design and optimization of inhibitors of lipid peroxidation and associated cell death. J. Am. Chem. Soc. 144, 14706–14721 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Lagrost, L. & Masson, D. The expanding role of lyso-phosphatidylcholine acyltransferase-3 (LPCAT3), a phospholipid remodeling enzyme, in health and disease. Curr. Opin. Lipidol. 33, 193–198 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Gimeno, R. E. Fatty acid transport proteins. Curr. Opin. Lipidol. 18, 271–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Qiu, P. et al. FATP2-targeted therapies — a role beyond fatty liver disease. Pharmacol. Res. 161, 105228 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, Y. et al. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis. 11, 994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Khan, S. et al. Kidney proximal tubule lipoapoptosis is regulated by fatty acid transporter-2 (FATP2. J. Am. Soc. Nephrol. 29, 81–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Khan, S. et al. Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression. JCI Insight https://doi.org/10.1172/jci.insight.136845 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Magtanong, L. et al. Context-dependent regulation of ferroptosis sensitivity. Cell Chem. Biol. 29, 1409–1418.e1406 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Adeshakin, A. O. et al. Lipidomics data showing the effect of lipofermata on myeloid-derived suppressor cells in the spleens of tumor-bearing mice. Data Brief. 35, 106882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ursini, F. et al. A white paper on phospholipid hydroperoxide glutathione peroxidase (GPx4) forty years later. Free Radic. Biol. Med. 188, 117–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Stockwell, B. R. Ferroptosis turns 10: EMERGING mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Angeli, J. P. F., Shah, R., Pratt, D. A. & Conrad, M. Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol. Sci. 38, 489–498 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Bowry, V. W., Ingold, K. U. & Stocker, R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem. J. 288, 341–344 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miotto, G. et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28, 101328 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Kagan, V., Serbinova, E. & Packer, L. Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem. Biophys. Res. Commun. 169, 851–857 (1990).

    Article  CAS  PubMed  Google Scholar 

  127. Kagan, V. E. et al. Plasma membrane NADH-coenzyme Q0 reductase generates semiquinone radicals and recycles vitamin E homologue in a superoxide-dependent reaction. FEBS Lett. 428, 43–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Kagan, V. E., Serbinova, E. A., Forte, T., Scita, G. & Packer, L. Recycling of vitamin E in human low density lipoproteins. J. Lipid Res. 33, 385–397 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Cossins, E., Lee, R. & Packer, L. ESR studies of vitamin C regeneration, order of reactivity of natural source phytochemical preparations. Biochem. Mol. Biol. Int. 45, 583–597 (1998).

    CAS  PubMed  Google Scholar 

  130. Maguire, J. J., Kagan, V., Ackrell, B. A., Serbinova, E. & Packer, L. Succinate-ubiquinone reductase linked recycling of alpha-tocopherol in reconstituted systems and mitochondria: requirement for reduced ubiquinone. Arch. Biochem. Biophys. 292, 47–53 (1992).

    Article  CAS  PubMed  Google Scholar 

  131. Ernster, L. & Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1271, 195–204 (1995).

    Article  PubMed  Google Scholar 

  132. Mukai, K., Morimoto, H., Kikuchi, S. & Nagaoka, S. Kinetic study of free-radical-scavenging action of biological hydroquinones (reduced forms of ubiquinone, vitamin K and tocopherol quinone) in solution. Biochim. Biophys. Acta 1157, 313–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Jang, S. et al. Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox Biol. 45, 102021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Solmonson, A. & DeBerardinis, R. J. Lipoic acid metabolism and mitochondrial redox regulation. J. Biol. Chem. 293, 7522–7530 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Anthonymuthu, T. S., Kenny, E. M., Lamade, A. M., Kagan, V. E. & Bayir, H. Oxidized phospholipid signaling in traumatic brain injury. Free. Radic. Biol. Med. https://doi.org/10.1016/j.freeradbiomed.2018.06.031 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hogg, N. & Kalyanaraman, B. Nitric oxide and lipid peroxidation. Biochim. Biophys. Acta 1411, 378–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. O’Donnell, V. B. & Freeman, B. A. Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. Circ. Res. 88, 12–21 (2001).

    Article  PubMed  Google Scholar 

  140. Kagan, V. E. et al. Redox epiphospholipidome in programmed cell death signaling: catalytic mechanisms and regulation. Front. Endocrinol. 11, 628079 (2020).

    Article  Google Scholar 

  141. Kapralov, A. A. et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol. 16, 278–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dar, H. H. et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO(•) sabotage of theft-ferroptosis. Redox Biol. 45, 102045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mikulska-Ruminska, K. et al. NO represses the oxygenation of arachidonoyl PE by 15LOX/PEBP1: mechanism and role in ferroptosis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22105253 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Charbe, N. B. et al. A new era in oxygen therapeutics? From perfluorocarbon systems to haemoglobin-based oxygen carriers. Blood Rev. 54, 100927 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Ekmekci, Y. et al. Thrombophilia and avascular necrosis of femoral head in kidney allograft recipients. Nephrol. Dial. Transpl. 21, 3555–3558 (2006).

    Article  CAS  Google Scholar 

  146. Jenkins, C. M., Yan, W., Mancuso, D. J. & Gross, R. W. Highly selective hydrolysis of fatty acyl-CoAs by calcium-independent phospholipase A2β. Enzyme autoacylation and acyl-CoA-mediated reversal of calmodulin inhibition of phospholipase A2 activity. J. Biol. Chem. 281, 15615–15624 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. https://www.ncbi.nlm.nih.gov/books/NBK547852/ (National Institute of Diabetes and Digestive and Kidney Diseases, 2012).

  148. Jenkins, C. M., Yang, J. & Gross, R. W. Mechanism-based inhibition of iPLA2β demonstrates a highly reactive cysteine residue (C651) that interacts with the active site: mass spectrometric elucidation of the mechanisms underlying inhibition. Biochemistry 52, 4250–4263 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Aguilera, A. et al. C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria. J. Cell Biol. https://doi.org/10.1083/jcb.201911005 (2022).

    Article  PubMed  Google Scholar 

  150. Beharier, O. et al. PLA2G6 guards placental trophoblasts against ferroptotic injury. Proc. Natl Acad. Sci. USA 117, 27319–27328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen, D. et al. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat. Commun. 12, 3644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sun, W. Y. et al. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat. Chem. Biol. 17, 465–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Brennan, E., Kantharidis, P., Cooper, M. E. & Godson, C. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat. Rev. Nephrol. 17, 725–739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gai, Z. et al. Lipid accumulation and chronic kidney disease. Nutrients https://doi.org/10.3390/nu11040722 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Schelling, J. R. The contribution of lipotoxicity to diabetic kidney disease. Cells https://doi.org/10.3390/cells11203236 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Li, L. O., Klett, E. L. & Coleman, R. A. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim. Biophys. Acta 1801, 246–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Proneth, B. & Conrad, M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 26, 14–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Sarhan, M., von Massenhausen, A., Hugo, C., Oberbauer, R. & Linkermann, A. Immunological consequences of kidney cell death. Cell Death Dis. 9, 114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Martin-Sanchez, D. et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 28, 218–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Mishima, E. et al. Drugs repurposed as antiferroptosis agents suppress organ damage, including AKI, by functioning as lipid peroxyl radical scavengers. J. Am. Soc. Nephrol. 31, 280–296 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Zhang, J., Wang, B., Yuan, S., He, Q. & Jin, J. The role of ferroptosis in acute kidney injury. Front. Mol. Biosci. 9, 951275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Ardaillou, R., Baud, L. & Sraer, J. Leukotrienes and other lipoxygenase products of arachidonic acid synthesized in the kidney. Am. J. Med. 81, 12–22 (1986).

    Article  CAS  PubMed  Google Scholar 

  164. Afshinnia, F. et al. Elevated lipoxygenase and cytochrome P450 products predict progression of chronic kidney disease. Nephrol. Dial. Transpl. 35, 303–312 (2020).

    Article  CAS  Google Scholar 

  165. Wang, Y. et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol. 51, 102262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bolignano, D. et al. Antioxidant agents for delaying diabetic kidney disease progression: a systematic review and meta-analysis. PLoS One 12, e0178699 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lippa, S., Colacicco, L., Calla, C., Sagliaschi, G. & Angelitti, A. G. Coenzyme Q10 levels, plasma lipids and peroxidation extent in renal failure and in hemodialytic patients. Mol. Asp. Med. 15, s213–s219 (1994).

    Article  Google Scholar 

  168. Peerapanyasut, W., Thamprasert, K. & Wongmekiat, O. Ubiquinol supplementation protects against renal ischemia and reperfusion injury in rats. Free Radic. Res. 48, 180–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Nielsen, M. B. et al. Elevated plasma free thiols are associated with early and one-year graft function in renal transplant recipients. PLoS One 16, e0255930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ozkok, A. & Edelstein, C. L. Pathophysiology of cisplatin-induced acute kidney injury. BioMed. Res. Int. 2014, 967826 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  171. van der Slikke, E. C. et al. Plasma free thiol levels during early sepsis predict future renal function decline. Antioxidants https://doi.org/10.3390/antiox11050800 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Zhang, M. Z. et al. IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 91, 375–386 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Li, X. et al. Role of M2 macrophages in sepsis-induced acute kidney injury. Shock 50, 233–239 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Kinsey, G. R. et al. Identification and distribution of endoplasmic reticulum iPLA2. Biochem. Biophys. Res. Commun. 327, 287–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Cohen, D. et al. Role of calcium-independent phospholipase A2 in complement-mediated glomerular epithelial cell injury. Am. J. Physiol. Renal Physiol. 294, F469–F479 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Van Laer, K., Hamilton, C. J. & Messens, J. Low-molecular-weight thiols in thiol-disulfide exchange. Antioxid. Redox Signal. 18, 1642–1653 (2013).

    Article  PubMed  Google Scholar 

  177. Salinas, G. & Comini, M. A. Alternative thiol-based redox systems. Antioxid. Redox Signal. 28, 407–409 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Stipanuk, M. H., Dominy, J. E. Jr., Lee, J. I. & Coloso, R. M. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J. Nutr. 136, 1652S–1659S (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Lieberman, M. W. et al. Growth retardation and cysteine deficiency in γ-glutamyl transpeptidase-deficient mice. Proc. Natl Acad. Sci. USA 93, 7923–7926 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nakagawa, H. et al. Assignment of the human renal dipeptidase gene (DPEP1) to band q24 of chromosome 16. Cytogenet. Cell Genet. 59, 258–260 (1992).

    Article  CAS  PubMed  Google Scholar 

  182. Kaur, A. et al. ChaC2, an enzyme for slow turnover of cytosolic glutathione. J. Biol. Chem. 292, 638–651 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3, e02523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Poltorack, C. D. & Dixon, S. J. Understanding the role of cysteine in ferroptosis: progress & paradoxes. FEBS J. https://doi.org/10.1111/febs.15842 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Combs, J. A. & DeNicola, G. M. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers https://doi.org/10.3390/cancers11050678 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Asantewaa, G. & Harris, I. S. Glutathione and its precursors in cancer. Curr. Opin. Biotechnol. 68, 292–299 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Huang, S. et al. N-Acetylcysteine attenuates cisplatin-induced acute kidney injury by inhibiting the C5a receptor. Biomed. Res. Int. 2019, 4805853 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Louandre, C. et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer 133, 1732–1742 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Zheng, J. et al. Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death Dis. 12, 698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pader, I. et al. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc. Natl Acad. Sci. USA 111, 6964–6969 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Harris, I. S. et al. Deubiquitinases maintain protein homeostasis and survival of cancer cells upon glutathione depletion. Cell Metab. 29, 1166–1181 e1166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Elmarakby, A. A. et al. A dual role of 12/15-lipoxygenase in LPS-induced acute renal inflammation and injury. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1669–1680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lee, S. J. et al. Impact of case volume on outcome and performance of targeted temperature management in out-of-hospital cardiac arrest survivors. Am. J. Emerg. Med. 33, 31–36 (2015).

    Article  PubMed  Google Scholar 

  197. Barayeu, U. et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01145-w (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551, 639–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kang, Y. P. et al. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab. 33, 174–189 e177 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Sato, H. et al. Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280, 37423–37429 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Chintala, S. et al. Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc. Natl Acad. Sci. USA 102, 10964–10969 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. De Bundel, D. et al. Loss of system xc does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J. Neurosci. 31, 5792–5803 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Daher, B. et al. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res. 79, 3877–3890 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Sosnoski, H. M., Sears, S. M. S., He, Y., Frare, C. & Hewett, S. J. Sexually dimorphic and brain region-specific transporter adaptations in system xc null mice. Neurochem. Int. 141, 104888 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Meira, W. et al. A Cystine-cysteine intercellular shuttle prevents ferroptosis in xCT(KO) pancreatic ductal adenocarcinoma cells. Cancers https://doi.org/10.3390/cancers13061434 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Fang, D. et al. Corrigendum to “Calorie restriction protects against contrast-induced nephropathy via SIRT1/GPX4 activation”. Oxid. Med. Cell. Longev. 2022, 9846101 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Seibt, T. M., Proneth, B. & Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med. 133, 144–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. von Massenhausen, A. et al. Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion. Sci. Adv. 8, eabl8920 (2022).

    Article  Google Scholar 

  210. Guan, Y. et al. A single genetic locus controls both expression of DPEP1/CHMP1A and kidney disease development via ferroptosis. Nat. Commun. 12, 5078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Li, S. et al. Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life Sci. 261, 118347 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Arensman, M. D. et al. Cystine-glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc. Natl Acad. Sci. USA 116, 9533–9542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang, L. et al. Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc. Natl Acad. Sci. USA 119, e2122840119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Gopal, R. K. et al. Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma. Proc. Natl Acad. Sci. USA 115, E6283–E6290 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Priolo, C. et al. Impairment of gamma-glutamyl transferase 1 activity in the metabolic pathogenesis of chromophobe renal cell carcinoma. Proc. Natl Acad. Sci. USA 115, E6274–E6282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bansal, A. et al. γ-Glutamyltransferase 1 promotes clear cell renal cell carcinoma initiation and progression. Mol. Cancer Res. 17, 1881–1892 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Van den Branden, C. et al. Vitamin E protects renal antioxidant enzymes and attenuates glomerulosclerosis in adriamycin-treated rats. Nephron 91, 129–133 (2002).

    Article  PubMed  Google Scholar 

  218. Ikeda, Y. et al. Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice. J. Trace Elem. Med. Biol. 67, 126798 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Qin, L. Y. et al. Therapeutic potential of astragaloside IV against adriamycin-induced renal damage in rats via ferroptosis. Front. Pharmacol. 13, 812594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. van Raaij, S. et al. Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci. Rep. 8, 9353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Ikeda, Y. et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PLoS One 9, e89355 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Naito, Y. et al. Effect of iron restriction on renal damage and mineralocorticoid receptor signaling in a rat model of chronic kidney disease. J. Hypertens. 30, 2192–2201 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Wang, J. et al. Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov. 8, 127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fang, X., Ardehali, H., Min, J. & Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-022-00735-4 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Ichikawa, Y. et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Invest. 124, 617–630 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lyu, Y. L. et al. Topoisomerase IIβ mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67, 8839–8846 (2007).

    Article  CAS  PubMed  Google Scholar 

  227. Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Wang, L., Chen, X. & Yan, C. Ferroptosis: an emerging therapeutic opportunity for cancer. Genes Dis. 9, 334–346 (2022).

    Article  PubMed  Google Scholar 

  229. Trujillo-Alonso, V. et al. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol. 14, 616–622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zanganeh, S. et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Okazaki, Y. The role of ferric nitrilotriacetate in renal carcinogenesis and cell death: from animal models to clinical implications. Cancers 14, 1495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Rushworth, G. F. & Megson, I. L. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 141, 150–159 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Anderson, M. E., Powrie, F., Puri, R. N. & Meister, A. Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch. Biochem. Biophys. 239, 538–548 (1985).

    Article  CAS  PubMed  Google Scholar 

  234. Hagos, F. T. et al. Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine. Xenobiotica 47, 346–353 (2017).

    Article  CAS  PubMed  Google Scholar 

  235. Samuni, Y., Goldstein, S., Dean, O. M. & Berk, M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta 1830, 4117–4129 (2013).

    Article  CAS  PubMed  Google Scholar 

  236. Schöneich, C. Thiyl radical reactions in the chemical degradation of pharmaceutical proteins. Molecules https://doi.org/10.3390/molecules24234357 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Hurst, G. A., Shaw, P. B. & LeMaistre, C. A. Laboratory and clinical evaluation of the mucolytic properties of acetylcysteine. Am. Rev. Respir. Dis. 96, 962–970 (1967).

    CAS  PubMed  Google Scholar 

  238. Prescott, L. F. et al. Intravenous N-acetylcystine: the treatment of choice for paracetamol poisoning. Br. Med. J. 2, 1097–1100 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Karuppagounder, S. S. et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann. Neurol. 84, 854–872 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wang, H. Z. et al. N-acetylcysteine is effective for prevention but not for treatment of folic acid-induced acute kidney injury in mice. Crit. Care Med. 39, 2487–2494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ergin, B. et al. Effects of N-acetylcysteine (NAC) supplementation in resuscitation fluids on renal microcirculatory oxygenation, inflammation, and function in a rat model of endotoxemia. Intensive Care Med. Exp. 4, 29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Adedoyin, O. et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 314, F702–F714 (2018).

    Article  CAS  PubMed  Google Scholar 

  243. Li, Q. et al. NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radic. Biol. Med. 187, 158–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  244. Ratliff, B. B., Abdulmahdi, W., Pawar, R. & Wolin, M. S. Oxidant mechanisms in renal injury and disease. Antioxid. Redox Signal. 25, 119–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Rachoin, J.-S., Wolfe, Y., Patel, S. & Cerceo, E. Contrast associated nephropathy after intravenous administration: what is the magnitude of the problem? Ren. Fail. 43, 1311–1321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Steele, M. L. et al. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol. 1, 441–445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Liebman, S. E. & Le, T. H. Eat your broccoli: oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients 13, 266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Wu, Y. et al. Selenoprotein gene mRNA expression evaluation during renal ischemia–reperfusion injury in rats and ebselen intervention effects. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-022-03275-7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Müller, A., Cadenas, E., Graf, P. & Sies, H. A novel biologically active seleno-organic compound — 1: Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol. 33, 3235–3239 (1984).

    Article  PubMed  Google Scholar 

  250. Cramer, S. L. et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  251. Mukhopadhyay, S. et al. Autophagy is required for proper cysteine homeostasis in pancreatic cancer through regulation of SLC7A11. Proc Natl Acad Sci USA 118, https://doi.org/10.1073/pnas.2021475118 (2021).

  252. Kim, R. et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022).

    Article  CAS  PubMed  Google Scholar 

  253. Nabeyama, A. et al. xCT deficiency accelerates chemically induced tumorigenesis. Proc. Natl Acad. Sci. USA 107, 6436–6441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136, 4551–4556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 3, e437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Fiore, A. & Murray, P. J. Tryptophan and indole metabolism in immune regulation. Curr. Opin. Immunol. 70, 7–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Agledal, L., Niere, M. & Ziegler, M. The phosphate makes a difference: cellular functions of NADP. Redox Rep. 15, 2–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  259. Dong, C., Liu, S., Cui, Y. & Guo, Q. 12-Lipoxygenase as a key pharmacological target in the pathogenesis of diabetic nephropathy. Eur. J. Pharmacol. 879, 173122 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Camara, N. O., Martins, J. O., Landgraf, R. G. & Jancar, S. Emerging roles for eicosanoids in renal diseases. Curr. Opin. Nephrol. Hypertens. 18, 21–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  261. Faulkner, J., Pye, C., Al-Shabrawey, M. & Elmarakby, A. A. Inhibition of 12/15-lipoxygenase reduces renal inflammation and injury in streptozotocin-induced diabetic mice. J. Diabetes Metab. https://doi.org/10.4172/2155-6156.1000555 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Hao, C. M. & Breyer, M. D. Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int. 71, 1105–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  263. Po, L. S., Chen, Z. Y., Tsang, D. S. & Leung, L. K. Baicalein and genistein display differential actions on estrogen receptor (ER) transactivation and apoptosis in MCF-7 cells. Cancer Lett. 187, 33–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  264. Liao, J. F., Hung, W. Y. & Chen, C. F. Anxiolytic-like effects of baicalein and baicalin in the Vogel conflict test in mice. Eur. J. Pharmacol. 464, 141–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  265. Patel, N. S. et al. Reduction of renal ischemia-reperfusion injury in 5-lipoxygenase knockout mice and by the 5-lipoxygenase inhibitor zileuton. Mol. Pharmacol. 66, 220–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  266. Badr, K. F. Five-lipoxygenase products in glomerular immune injury. J. Am. Soc. Nephrol. 3, 907–915 (1992).

    Article  CAS  PubMed  Google Scholar 

  267. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Famulski, K. S. et al. Molecular phenotypes of acute kidney injury in kidney transplants. J. Am. Soc. Nephrol. 23, 948–958 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Müller, T. et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell. Mol. Life Sci. 74, 3631–3645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Bao, Z. et al. Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury. Nat. Commun. 12, 4220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Sun, Z., Wu, J., Bi, Q. & Wang, W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res. Ther. 13, 297 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Tao, W. H. et al. Dexmedetomidine attenuates ferroptosis-mediated renal ischemia/reperfusion injury and inflammation by inhibiting ACSL4 via alpha2-AR. Front. Pharmacol. 13, 782466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Setti, G. et al. Peroxisome proliferator-activated receptor-γ agonist rosiglitazone prevents albuminuria but not glomerulosclerosis in experimental diabetes. Am. J. Nephrol. 32, 393–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  274. Calkin, A. C. et al. PPAR-α and -γ agonists attenuate diabetic kidney disease in the apolipoprotein E knockout mouse. Nephrol. Dial. Transpl. 21, 2399–2405 (2006).

    Article  CAS  Google Scholar 

  275. Gumieniczek, A. Effect of the new thiazolidinedione-pioglitazone on the development of oxidative stress in liver and kidney of diabetic rabbits. Life Sci. 74, 553–562 (2003).

    Article  CAS  PubMed  Google Scholar 

  276. Bakris, G. et al. Rosiglitazone reduces urinary albumin excretion in type II diabetes. J. Hum. Hypertens. 17, 7–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  277. Nakamura, T. et al. Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin-1 and albumin excretion in diabetes patients. J. Diabetes Complicat. 14, 250–254 (2000).

    Article  CAS  Google Scholar 

  278. Agarwal, R. et al. A pilot randomized controlled trial of renal protection with pioglitazone in diabetic nephropathy. Kidney Int. 68, 285–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  279. Hsu, Y.-W. et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 101, 1066–1076 (2004).

    Article  CAS  PubMed  Google Scholar 

  280. Toto, R. D. Treatment of hypertension in chronic kidney disease. Semin. Nephrol. 25, 435–439 (2005).

    Article  PubMed  Google Scholar 

  281. Kawagishi, H. & Finkel, T. Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nat. Med. 20, 711–713 (2014).

    Article  CAS  PubMed  Google Scholar 

  282. O’Donnell, V. B. & Aldrovandi, M. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death., https://doi.org/10.1126/scisignal.aau2293 (2019).

  283. Pang, H. et al. Multiple-ascending-dose pharmacokinetics and safety evaluation of baicalein chewable tablets in healthy Chinese volunteers. Clin. Drug Investig. 36, 713–724 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the NIH (R01GM122923 to S.J.D.; U01AI156924, P01HL114453, R01CA165065, R01CA266342 and R01AI145406 to V.E.K.; R01NS076511, R37NS061817 and U01AI156923 to H.B.; and UG3DK114861 to J.A.K.) and by the American Cancer Society (RSG-21-017-01-CCG to S.J.D.).

Author information

Authors and Affiliations

Authors

Contributions

H.B. and V.E.K. designed and conceptualized the review. All authors contributed to writing of the manuscript and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Hülya Bayır.

Ethics declarations

Competing interests

S.J.D. is a founder of Prothegen Inc., a member of the scientific advisory board for Ferro Therapeutics and Hillstream BioPharma, and an inventor on patents related to ferroptosis (patent numbers 10597381, 10233171 and 9580398). J.A.K. is currently Chief Medical Officer of Spectral Medical and Dialco Medical Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Tomokazu Souma, Brent Stockwell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayır, H., Dixon, S.J., Tyurina, Y.Y. et al. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 19, 315–336 (2023). https://doi.org/10.1038/s41581-023-00689-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00689-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing