Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipoprotein-associated phospholipase A2 as a biomarker for coronary disease and stroke

Abstract

Lipoprotein-associated phospholipase A2 (Lp-PLA2), also known as platelet-activating factor acetylhydrolase, is a plasma enzyme that circulates bound to lipoproteins. The association between Lp-PLA2 and atherosclerosis is ambiguous, as it can both degrade and generate potentially damaging vasoactive molecules. In this article, we speculate that Lp-PLA2 associated with HDL might have cardioprotective properties, whereas the same enzyme bound to LDL might contribute directly to atherosclerosis at all stages, from lipoprotein oxidation to endothelial dysfunction, and plaque initiation and growth. Genetic and animal model studies give varying indications as to the contribution of Lp-PLA2 to atherogenesis and tend to support the view that higher Lp-PLA2 levels are cardioprotective. By contrast, a series of population studies point clearly to a positive association between plasma Lp-PLA2 levels or activity levels and risk of coronary heart disease or stroke. Typically, people with Lp-PLA2 levels in the highest quintile of the population have about a twofold greater risk than those in the lowest quintile. It is, perhaps, too early to introduce Lp-PLA2 as a population-wide biomarker for coronary heart disease risk; however, with accumulating evidence, it might find a place in a stepwise risk assessment of individuals who require more aggressive intervention to prevent vascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative proatherogenic properties of lipoprotein-associated phospholipase A2.
Figure 2: Potential use of lipoprotein-associated phospholipase A2 in a stepwise approach to coronary risk assessment.

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340: 115–126

    Article  CAS  Google Scholar 

  2. Libby P et al. (2002) Inflammation and atherosclerosis. Circulation 105: 1135–1143

    CAS  Google Scholar 

  3. Ridker PM et al. (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347: 1557–1565

    Article  CAS  Google Scholar 

  4. Murakami M and Kudo I (2002) Phospholipase A2 . J Biochem (Tokyo) 131: 285–292

    Article  CAS  Google Scholar 

  5. Hurt-Camejo E et al. (2001) Phospholipase A2 in vascular disease. Circ Res 89: 298–304

    Article  CAS  Google Scholar 

  6. Stafforini DM et al. (1997) Platelet-activating factor acetylhydrolases. J Biol Chem 272: 17895–17898

    Article  CAS  Google Scholar 

  7. Prescott SM et al. (2002) Molecular events in acute inflammation. Arterioscler Thromb Vasc Biol 22: 727–733

    Article  CAS  Google Scholar 

  8. Chen CH (2004) Platelet-activating factor acetylhydrolase: is it good or bad for you? Curr Opin Lipidol 15: 337–341

    Article  CAS  Google Scholar 

  9. Stafforini DM (1987) Human plasma platelet-activating factor acetylhydrolase. Association with lipoprotein particles and role in the degradation of platelet-activating factor. J Biol Chem 262: 4215–4222

    CAS  PubMed  Google Scholar 

  10. Caslake MJ and Packard CJ (2003) Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase) and cardiovascular disease. Curr Opin Lipidol 14: 347–352

    Article  CAS  Google Scholar 

  11. Elstad MR (1989) Platelet-activating factor acetylhydrolase increases during macrophage differentiation. A novel mechanism that regulates accumulation of platelet-activating factor. J Biol Chem 264: 8467–8470

    CAS  PubMed  Google Scholar 

  12. Korth R (1993) Human platelets release a paf-acether: acetylhydrolase similar to that in plasma. Lipids 28: 193–199

    Article  CAS  Google Scholar 

  13. Asano K et al. (1999) Cellular source(s) of platelet-activating-factor acetylhydrolase activity in plasma. Biochem Biophys Res Commun 261: 511–514

    Article  CAS  Google Scholar 

  14. Tselepis AD et al. (1995) PAF-degrading acetylhydrolase is preferentially associated with dense LDL and VHDL-1 in human plasma. Catalytic characteristics and relation to the monocyte-derived enzyme. Arterioscler Thromb Vasc Biol 15: 1764–1773

    Article  CAS  Google Scholar 

  15. Tselepis AD et al. (2001) N-linked glycosylation of macrophage-derived PAF-AH is a major determinant of enzyme association with plasma HDL. J Lipid Res 42: 1645–1654

    CAS  PubMed  Google Scholar 

  16. Tselepis AD and Chapman MJ (2002) Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atherosclerosis Suppl 3: 57–68

    Article  CAS  Google Scholar 

  17. Marathe GK et al. (2003) Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles. J Biol Chem 278: 3937–3947

    Article  CAS  Google Scholar 

  18. Macphee CH (2001) Lipoprotein-associated phospholipase A2: a potential new risk factor for coronary artery disease and a therapeutic target. Curr Opin Pharmacol 1: 121–125

    Article  CAS  Google Scholar 

  19. Skalen K et al. (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417: 750–754

    Article  CAS  Google Scholar 

  20. Zhu Y (1997) Activation of ICAM-1 promoter by lysophosphatidylcholine: possible involvement of protein tyrosine kinases. Biochim Biophys Acta 1345: 93–98

    Article  CAS  Google Scholar 

  21. Takahara N (1996) Lysophosphatidylcholine stimulates the expression and production of MCP-1 by human vascular endothelial cells. Metabolism 45: 559–564

    Article  CAS  Google Scholar 

  22. Hakkinen T et al. (1999) Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol 19: 2909–2917

    Article  CAS  Google Scholar 

  23. Hase M et al. (2002) Reduction in the extent of atherosclerosis in apolipoprotein E-deficient mice induced by electroporation-mediated transfer of the human plasma platelet-activating factor acetylhydrolase gene into skeletal muscle. Prostaglandins Other Lipid Mediat 70: 107–118

    Article  CAS  Google Scholar 

  24. Quarck R et al. (2001) Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice. Circulation 103: 2495–2500

    Article  CAS  Google Scholar 

  25. Theilmeier G et al. (2000) HDL-associated PAF-AH reduces endothelial adhesiveness in apoE−/− mice. FASEB J 14: 2032–2039

    Article  CAS  Google Scholar 

  26. Noto H et al. (2003) Human plasma platelet-activating factor acetylhydrolase binds to all the murine lipoproteins, conferring protection against oxidative stress. Arterioscler Thromb Vasc Biol 23: 829–835

    Article  CAS  Google Scholar 

  27. Turunen P et al. (2005) Intravascular adenovirus-mediated lipoprotein-associated phospholipase A2 gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Atherosclerosis 179: 27–33

    Article  CAS  Google Scholar 

  28. Stafforini DM et al. (1996) Platelet-activating factor acetylhydrolase deficiency. A missense mutation near the active site of an anti-inflammatory phospholipase. J Clin Invest 97: 2784–2791

    Article  CAS  Google Scholar 

  29. Yamada Y et al. (1998) Identification of the G994→T missense in exon 9 of the plasma platelet-activating factor acetylhydrolase gene as an independent risk factor for coronary artery disease in Japanese men. Metabolism 47: 177–181

    Article  CAS  Google Scholar 

  30. Hiramoto M et al. (1997) A mutation in plasma platelet-activating factor acetylhydrolase (Val279→Phe) is a genetic risk factor for stroke. Stroke 28: 2417–2420

    Article  CAS  Google Scholar 

  31. Kruse S et al. (2000) The Ile198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytical activities and are associated with atopy and asthma. Am J Hum Genet 66: 1522–1530

    Article  CAS  Google Scholar 

  32. Abuzeid AM et al. (2003) Association between the Ala379Val variant of the lipoprotein associated phospholipase A2 and risk of myocardial infarction in the north and south of Europe. Atherosclerosis 168: 283–288

    Article  CAS  Google Scholar 

  33. Ninio E et al. (2004) Platelet-activating factor-acetylhydrolase and PAF-receptor gene haplotypes in relation to future cardiovascular event in patients with coronary artery disease. Hum Mol Genet 13: 1341–1351

    Article  CAS  Google Scholar 

  34. Dada N et al. (2002) Lp-PLA2: an emerging biomarker of coronary heart disease. Expert Rev Mol Diagn 2: 17–22

    Article  CAS  Google Scholar 

  35. Caslake MJ et al. (2000) Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis 150: 413–419

    Article  CAS  Google Scholar 

  36. Packard CJ et al. (2000) Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 343: 1148–1155

    Article  CAS  Google Scholar 

  37. Blake GJ et al. (2001) A prospective evaluation of lipoprotein-associated phospholipase A2 levels and the risk of future cardiovascular events in women. J Am Coll Cardiol 38: 1302–1306

    Article  CAS  Google Scholar 

  38. Ballantyne CM et al. (2004) Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 109: 837–842

    Article  CAS  Google Scholar 

  39. Blankenberg S et al. (2003) Plasma PAF-acetylhydrolase in patients with coronary artery disease: results of a cross-sectional analysis. J Lipid Res 44: 1381–1386

    Article  CAS  Google Scholar 

  40. Koenig W et al. (2004) Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany. Circulation 110: 1903–1908

    Article  CAS  Google Scholar 

  41. Oei HH et al. (2005) Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam Study. Circulation 111: 570–575

    Article  CAS  Google Scholar 

  42. Rizos E et al. (2005) Lipoprotein-associated PAF-acetylhydrolase activity in subjects with the metabolic syndrome. Prostaglandins Leukot Essent Fatty Acids 72: 203–209

    Article  CAS  Google Scholar 

  43. Iribarren C et al. (2005) Association of lipoprotein-associated phospholipase A2 mass and activity with calcified coronary plaque in young adults: the CARDIA study. Arterioscler Thromb Vasc Biol 25: 216–221

    Article  CAS  Google Scholar 

  44. Brilakis ES et al. (2005) Association of lipoprotein-associated phospholipase A2 levels with coronary artery disease risk factors, angiographic coronary artery disease, and major adverse events at follow-up. Eur Heart J 26: 137–144

    Article  CAS  Google Scholar 

  45. Kudolo GB et al. (1997) Plasma PAF acetylhydrolase in non-insulin dependent diabetes mellitus and obesity: effect of hyperinsulinemia and lovastatin treatment. J Lipid Mediat Cell Signal 17: 97–113

    Article  CAS  Google Scholar 

  46. Tsimihodimos V et al. (2002) Atorvastatin preferentially reduces LDL-associated platelet-activating factor acetylhydrolase activity in dyslipidemias of type IIA and type IIB. Arterioscler Thromb Vasc Biol 22: 306–311

    Article  CAS  Google Scholar 

  47. Winkler K et al. (2004) Fluvastatin slow-release lowers platelet-activating factor acetyl hydrolase activity: a placebo-controlled trial in patients with type 2 diabetes. J Clin Endocrinol Metab 89: 1153–1159

    Article  CAS  Google Scholar 

  48. Tsimihodimos V et al. (2003) Fenofibrate induces HDL-associated PAF-AH but attenuates enzyme activity associated with apoB-containing lipoproteins. J Lipid Res 44: 927–934

    Article  CAS  Google Scholar 

  49. Eisaf M and Tselepis AD (2003) Effect of hypolipidemic drugs on lipoprotein-associated platelet activating factor acetylhydrolase. Implication for atherosclerosis. Biochem Pharmacol 66: 2069–2073

    Article  CAS  Google Scholar 

  50. Macphee CH et al. (1999) Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 338: 479–487

    Article  CAS  Google Scholar 

  51. Carpenter KL et al. (2001) Inhibition of lipoprotein-associated phospholipase A2 diminishes the death-inducing effects of oxidised LDL on human monocyte-macrophages. FEBS Lett 505: 357–363

    Article  CAS  Google Scholar 

  52. Leach CA et al. (2001) Lipoprotein-associated PLA2 inhibition: a novel, non-lipid lowering strategy for atherosclerosis therapy. Farmaco 56: 45–50

    Article  CAS  Google Scholar 

  53. Boyd HF et al. (2002) Potent, orally active inhibitors of lipoprotein-associated phospholipase A2: 1-(biphenylmethylamidoalkyl)-pyrimidones. Bioorg Med Chem Lett 12: 51–55

    Article  CAS  Google Scholar 

  54. Anderson KM (1991) Cardiovascular disease risk profiles. Am Heart J 121: 293–298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel J Caslake.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caslake, M., Packard, C. Lipoprotein-associated phospholipase A2 as a biomarker for coronary disease and stroke. Nat Rev Cardiol 2, 529–535 (2005). https://doi.org/10.1038/ncpcardio0321

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing