Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Remotely sensed resilience of tropical forests

Abstract

Recent work suggests that episodes of drought and heat can bring forests across climate zones to a threshold for massive tree mortality1. As complex systems approach a threshold for collapse they tend to exhibit a loss of resilience, as reflected in declining recovery rates from perturbations2. Trees may be no exception, as at the verge of drought-induced death, trees are found to be weakened in multiple ways, affecting their ability to recover from stress3,4. Here we use worldwide time series of satellite images to show that temporal autocorrelation, an indicator of slow recovery rates5, rises steeply as mean annual precipitation declines to levels known to be critical for tropical forests. This implies independent support for the idea that such forests may have a tipping point for collapse at drying conditions. Moreover, the demonstration that reduced rates of recovery (slowing down) may be detected from satellite data suggests a novel way to monitor resilience of tropical forests, as well as other ecosystems known to be vulnerable to collapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Slowness of dynamics of intact tropical forest as a function of mean annual precipitation on different continents.
Figure 2: Distribution of tropical forest cover (top), mean annual precipitation (middle) and remotely sensed slowness (bottom) across continents.

Similar content being viewed by others

References

  1. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259, 660–684 (2010).

    Article  Google Scholar 

  2. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  Google Scholar 

  3. Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).

    Article  CAS  Google Scholar 

  4. Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    Article  CAS  Google Scholar 

  5. Ives, A. R. Measuring resilience in stochastic systems. Ecol. Monogr. 65, 217–233 (1995).

    Article  Google Scholar 

  6. Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    Article  CAS  Google Scholar 

  7. Staver, A. C. & Hansen, M. C. Analysis of stable states in global savannas: Is the CART pulling the horse?—a comment. Glob. Ecol. Biogeogr. 24, 985–987 (2015).

    Article  Google Scholar 

  8. Nepstad, D. C., Tohver, I. M., David, R., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    Article  Google Scholar 

  9. da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).

    Article  Google Scholar 

  10. Moser, G. et al. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Glob. Change Biol. 20, 1481–1497 (2014).

    Article  Google Scholar 

  11. Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    Article  CAS  Google Scholar 

  12. Hartmann, H., Adams, H. D., Anderegg, W. R. L., Jansen, S. & Zeppel, M. J. B. Research frontiers in drought-induced tree mortality: crossing scales and disciplines. New Phytol. 205, 965–969 (2015).

    Article  Google Scholar 

  13. Anderegg, W. R. L., Anderegg, L. D. L., Berry, J. A. & Field, C. B. Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia 175, 11–23 (2014).

    Article  Google Scholar 

  14. Dai, L., Vorselen, D., Korolev, K. S. & Gore, J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).

    Article  CAS  Google Scholar 

  15. Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).

    Article  CAS  Google Scholar 

  16. Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    Article  CAS  Google Scholar 

  17. Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    Article  CAS  Google Scholar 

  18. Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil. Trans. R. Soc. B 370, 20130263 (2015).

    Article  Google Scholar 

  19. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Article  CAS  Google Scholar 

  20. Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    Article  Google Scholar 

  21. Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article  CAS  Google Scholar 

  22. Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    Article  CAS  Google Scholar 

  23. Feeley, K. J., Wright, S. J., Nur Supardi, M. N., Kassim, A. R. & Davies, S. J. Decelerating growth in tropical forest trees. Ecol. Lett. 10, 461–469 (2007).

    Article  Google Scholar 

  24. Dakos, V., Van Nes, E. H., D’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).

    Article  Google Scholar 

  25. Miettinen, J., Shi, C. & Liew, S. C. Two decades of destruction in Southeast Asia’s peat swamp forests. Front. Ecol. Environ. 10, 124–128 (2012).

    Article  Google Scholar 

  26. Asefi-Najafabady, S. & Saatchi, S. Response of African humid tropical forests to recent rainfall anomalies. Phil. Trans. R. Soc. B 368, 20120306 (2013).

    Article  Google Scholar 

  27. Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5, 3906 (2014).

    Article  CAS  Google Scholar 

  28. Holmgren, M. & Poorter, L. Does a ruderal strategy dominate the endemic flora of the West African forests? J. Biogeogr. 34, 1100–1111 (2007).

    Article  Google Scholar 

  29. Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    Article  CAS  Google Scholar 

  30. Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).

    Article  CAS  Google Scholar 

  31. Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

    Article  CAS  Google Scholar 

  32. Holmgren, M., Hirota, M., Van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Change 3, 755–758 (2013).

    Article  Google Scholar 

  33. Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

    Article  CAS  Google Scholar 

  34. Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly funded by a Marie-Curie IRG grant within the European Community’s Seventh Framework Program to J.V. (268423, http://bfast.r-forge.r-project.org) and by the ERC-Early Warning grant and Spinoza award received by M.S. We thank Y. Liu for the global VOD AMSR-E data set (2002–2011) and support.

Author information

Authors and Affiliations

Authors

Contributions

M.S., M.Hirota, M.Holmgren, E.H.V.N. and J.V. conceived the idea of the study; J.V., N.U. and A.Z. analysed the data; M.S., J.V., M.Herold, M.Hirota, M.Holmgren and E.H.V.N. interpreted the results; M.S. wrote the paper; all authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Jan Verbesselt or Marten Scheffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbesselt, J., Umlauf, N., Hirota, M. et al. Remotely sensed resilience of tropical forests. Nature Clim Change 6, 1028–1031 (2016). https://doi.org/10.1038/nclimate3108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing