Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Overestimation of marsh vulnerability to sea level rise

Abstract

Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Meta-analysis of vertical accretion and elevation change rates of Atlantic and Gulf Coast salt marshes in North America and Europe.
Figure 2: An example of a SLAMM model simulation illustrating near-complete loss of marshes in Chesapeake and Delaware Bay (USA) in response to 1 m sea level rise65.
Figure 3: Maximum rates of sea level rise for marsh survival.
Figure 4: Marsh migration into adjacent uplands.

References

  1. 1

    DeLaune, R. D., Patrick, H. H. & Buresh, R. J. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275, 532–533 (1978).

    CAS  Article  Google Scholar 

  2. 2

    Stevenson, J. C., Ward, L. G. & Kearney, M. S. in Estuarine Variability (ed. Wolfe, D. A.) 241–259 (Academic, 1986).

    Book  Google Scholar 

  3. 3

    Day, J. W. Jr & Templet, P. H. Consequences of sea level rise: implications from the Mississippi Delta. Coast. Manage. 17, 241–257 (1989).

    Article  Google Scholar 

  4. 4

    Reed, D. J. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surf. Proc. Land. 20, 39–48 (1995).

    Article  Google Scholar 

  5. 5

    Fitzgerald, D. M., Fenster, M. S. Argow, B. A. & Buynevich, I. V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 36, 601–47 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Kearney, M. S., Rogers, A. S., Townsend, G., Rizzo, E. & Stutzer, D. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos 83, 173–178 (2002).

    Article  Google Scholar 

  8. 8

    Carniello, L., Defina, A. & D'Alpaos, L. Morphological evolution of the Venice lagoon: evidence from the past and trend for the future. J. Geophys. Res. Earth Surf. 114, 1–10 (2009).

    Article  Google Scholar 

  9. 9

    Murray, N. J. et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272 (2014).

    Article  Google Scholar 

  10. 10

    Ma, Z. J. et al. Ecosystems management: rethinking China's new great wall. Science 346, 912–914 (2014).

    CAS  Article  Google Scholar 

  11. 11

    McFadden, L., Spencer, T. & Nicholls, R. J. Broad-scale modeling of coastal wetlands: what is required? Hydrobiologia 577, 5–15 (2007).

    Article  Google Scholar 

  12. 12

    Nicholls, R. J. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) 315–356 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  13. 13

    Reed, D. J. et al. in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product (eds Titus, J. G. & Strange, E. M.) 134–186 (US EPA, 2008).

    Google Scholar 

  14. 14

    Craft, C. et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).

    Article  Google Scholar 

  15. 15

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  16. 16

    Ouyang, X. & Lee, S. Y. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11, 5057–5071 (2014).

    Article  Google Scholar 

  17. 17

    Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83. (2013).

    CAS  Article  Google Scholar 

  18. 18

    Moller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geosci. 7, 727–731 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Hopkinson, C. S., Cai, W. & Hu, X. Carbon sequestration in wetland dominated coastal systems — a global sink of rapidly diminishing magnitude. Curr. Opin. Environ. Sustain. 4, 186–194 (2012).

    Article  Google Scholar 

  20. 20

    Torio, D. D. & Chmura, G. L. Assessing coastal squeeze of tidal wetlands. J. Coast. Res. 29, 1049–1061 (2013).

    Article  Google Scholar 

  21. 21

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  22. 22

    Cahoon, D. R. & Reed, D. J. Relationships among marsh surface topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. J. Coast. Res. 11, 357–369 (1995).

    Google Scholar 

  23. 23

    Leonard, L. A. Controls on sediment transport and deposition in an incised mainland marsh basin, southeastern North Carolina. Wetlands 17, 263–274 (1997).

    Article  Google Scholar 

  24. 24

    Christiansen, T., Wiberg, P. L. & Milligan, T. G. Flow and sediment transport on a tidal salt marsh surface. Estuar. Coast. Shelf Sci. 50, 315–331 (2000).

    Article  Google Scholar 

  25. 25

    Friedrichs, C. T. & Perry, J. E. Tidal salt marsh morphodynamics. J. Coastal Res. 27, 6–36 (2001).

    Google Scholar 

  26. 26

    Hill, T. D. & Anisfeld, S. C. Coastal wetland response to sea level rise in Connecticut and New York. Estuarine. Coast. Shelf Sci. 163, 185–193 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Kolker, A. S., Kirwan, M. L., Goodbred, S. L. & Cochran, J. K. Global climate changes recorded in coastal wetland sediments: empirical observation linked to theoretical predictions. Geophys. Res. Lett. 37, L14706 (2010).

    Article  Google Scholar 

  28. 28

    Vandenbruwaene, W. et al. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: comparison with a natural tidal marsh. Geomorphology 130, 115–126 (2011).

    Article  Google Scholar 

  29. 29

    Cadol, D. et al. Elevation-dependent surface elevation gain in a tidal freshwater marsh and implications for marsh persistence. Limnol. Oceanogr. 59, 1065–1080 (2014).

    Article  Google Scholar 

  30. 30

    Smith, J. A. The role of phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLoS ONE 8, e65091 (2013).

    Article  Google Scholar 

  31. 31

    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).

    Article  Google Scholar 

  32. 32

    Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).

    Article  Google Scholar 

  33. 33

    Nyman, J. A., Walters, R. J., Delaune, R. D. & Patrick, W. H. Marsh vertical accretion via vegetative growth. Estuar. Coast. Shelf Sci. 69, 370–380 (2006).

    Article  Google Scholar 

  34. 34

    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. USA 106, 6182–6186 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Mudd, S. M., D'Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. 115, F03029 (2010).

    Google Scholar 

  36. 36

    Temmerman, S., Moonen, P., Schoelynck, J., Govers, G. & Bouma, T. J. Impact of vegetation die-off on spatial flow patterns over a tidal marsh. Geophys. Res. Lett. 39, L03406 (2012).

    Article  Google Scholar 

  37. 37

    Yang, S. L., Shi, B. W., Bouma, T. J., Ysebaert, T. & Luo, X. X. Wave attenuation at a salt marsh margin: a case study of an exposed coast on the Yangtze estuary. Estuar. Coasts 35, 169–182 (2012).

    Article  Google Scholar 

  38. 38

    Baustian, J. J., Mendelssohn, I. A. & Hester, M. W. Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Change Biol. 18, 3377–3382 (2012).

    Article  Google Scholar 

  39. 39

    Van de Koppel, J., Van der Wal, D., Bakker, J. P. & Herman, P. M. J. Self-organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1–E12 (2005).

    Article  Google Scholar 

  40. 40

    Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys. Res. Lett. 34, L11402 (2007).

    Article  Google Scholar 

  41. 41

    Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).

    Article  Google Scholar 

  42. 42

    Wang, C. & Temmerman, S. Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states? An empirical study on intertidal flats and marshes. J. Geophys. Res. 118, 229–240 (2013).

    Article  Google Scholar 

  43. 43

    Marani, M., Da Lio, C. & D'Alpaos, A. Vegetation engineers marsh morphology through multiple competing stable states. Proc. Natl Acad. Sci. USA 110, 3259–3263 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Mariotti, G. & Fagherazzi, S. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proc. Natl Acad. Sci. USA 110, 5353–5356 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Dahl, T. E. & Stedman, S. M. Status and Trends of Wetlands in the Coastal Watersheds of the Conterminous United States 2004 to 2009. (US Department of the Interior, Fish and Wildlife Service, and US National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2013).

    Google Scholar 

  46. 46

    Cahoon, D. R. et al. in Wetlands and Natural Resource Management: Ecological Studies (eds Verhoeven, J. T. A., Beltman, B., Bobbink, R. & Whigham, D.) 271–292 (Springer, 2006).

    Book  Google Scholar 

  47. 47

    French, J. Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Mar. Geol. 235, 119–136 (2006).

    Article  Google Scholar 

  48. 48

    Syvitski, J. P. et al. Sinking deltas due to human activities. Nature Geosci. 2, 681–686 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Church, J. A. & White, N. J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 33, L01602 (2006).

    Article  Google Scholar 

  50. 50

    Kemp, A. C. et al. Climate related sea-level variations over the past two millennia. Proc. Natl Acad. Sci. USA 108, 11017–11022 (2011).

    CAS  Article  Google Scholar 

  51. 51

    Engelhart, S. E. & Horton, B. P. Holocene sea level database for the Atlantic coast of the United States. Quat. Sci. Rev. 54, 12–25 (2012).

    Article  Google Scholar 

  52. 52

    Donnelly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc. Natl Acad. Sci. USA 98, 14218–14223 (2001).

    CAS  Article  Google Scholar 

  53. 53

    NOAA. Sea Level Trends (2014); http://tidesandcurrents.noaa.gov/sltrends/sltrends.html

  54. 54

    Chmura, G. L. & Hung, G. A. Controls on salt marsh accretion: a test in salt marshes of Eastern Canada. Estuaries 27, 70–81 (2004).

    Article  Google Scholar 

  55. 55

    Redfield, A. C. Development of a New England salt marsh. Ecol. Monogr. 42, 201–237 10.2307/1942263 (1972).

    Article  Google Scholar 

  56. 56

    Webb, E. L. et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Clim. Change 3, 458–465 (2013).

    Article  Google Scholar 

  57. 57

    Stralberg, D. M. et al. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay. PLoS ONE 6, e27388 (2011).

    CAS  Article  Google Scholar 

  58. 58

    Rogers, K., Saintilan, N. & Copeland, C. Modelling wetland surface elevation dynamics and its application to forecasting the effects of sea-level rise on estuarine wetlands. Ecol. Model. 244, 148–157 (2012).

    Article  Google Scholar 

  59. 59

    Swanson, K. M. et al. Wetland accretion rate model of ecosystem resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco estuary. Estuar. Coasts 37, 476–492 (2014).

    Article  Google Scholar 

  60. 60

    Schile, L. M. et al. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 9, e88760 (2014).

    Article  CAS  Google Scholar 

  61. 61

    Cooper, M. J. P. et al. The potential impacts of sea level rise on the coastal region of New Jersey, USA. Clim. Change 90, 475–492 (2008).

    Article  Google Scholar 

  62. 62

    Tian, B., Zhang, L., Wang, X., Zhou, Y. & Zhang, W. Forecasting the effects of sea-level rise at Chongming Dongtan Nature Reserve in the Yangtze Delta, Shanghai, China. Ecol. Engin. 36, 1383–1388 (2010).

    Article  Google Scholar 

  63. 63

    Moeslund, J. E. et al. Geographically comprehensive assessment of salt-meadow vegetation-elevation relations using LiDAR. Wetlands 31, 471–482 (2011).

    Article  Google Scholar 

  64. 64

    Blankespoor, B., Dagupta, S. & Laplante, B. Sea-level rise and coastal wetlands. Ambio 43, 996–1005 (2014).

    Article  Google Scholar 

  65. 65

    Glick, P., Clough, J. & Nunley, B. Sea-level Rise and Coastal Habitats in the Chesapeake Bay Region (National Wildlife Federation, 2008).

    Google Scholar 

  66. 66

    Traill, L. W. et al. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17, 1225–1233 (2011).

    Article  Google Scholar 

  67. 67

    Glick, P., Clough, J., Polaczyk, A., Couvillion, B. & Nunley, B. Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana. J. Coast. Res. 63, 211–233 (2013).

    Article  Google Scholar 

  68. 68

    Wang, H., Ge, Z., Yuan, Y. & Zhang, L. Evaluation of the combined threat from sea-level rise and sedimentation reduction to the coastal wetlands in the Yangtze Estuary, China. Ecol. Engin. 71, 346–354 (2014).

    Article  Google Scholar 

  69. 69

    Warren Pinnacle Consulting, Inc. Application of Sea-Level Affecting Marshes Model (SLAMM) to Long Island, NY and New York City Report no. 14-29 (New York State Energy Research and Development Authority, 2014); https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/SLAMM%20report.pdf

  70. 70

    US Fish and Wildlife Service. Rising to the Urgent Challenge: Strategic Plan for Responding to Accelerating Climate Change Technical Report (2010).

  71. 71

    U. S. Fish and Wildlife Service. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Swanquarter NWR Technical Report (2012).

  72. 72

    Poulter, B. Interactions between landscape disturbance and gradual environmental change: plant community migration in response to fire and sea level rise. PhD thesis, Duke Univ. (2005).

    Google Scholar 

  73. 73

    Kirwan, M. L. & Guntenspergen, G. R. Accelerated sea-level rise—a response to Craft et al. Front. Ecol. Environ. 7, 126–127 (2009).

    Article  Google Scholar 

  74. 74

    Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, 1–28 (2012).

    Article  Google Scholar 

  75. 75

    D'Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. Landscape evolution in tidal embayments: modeling the interplay of erosion sedimentation and vegetation dynamics. J. Geophys. Res. 112, F01008 (2007).

    Article  Google Scholar 

  76. 76

    Schuerch, M., Vafeidis, A., Slawig, T. & Temmerman, S. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. 118, 84–96 (2013).

    Article  Google Scholar 

  77. 77

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (Cambridge Univ. Press, 2013).

    Google Scholar 

  78. 78

    Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 315, 368–370 (2007).

    CAS  Article  Google Scholar 

  79. 79

    Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nature Clim. Change 3, 4–6 (2013).

    Article  Google Scholar 

  80. 80

    Rahmstorf, S., Foster, G. & Cazenave, A. Comparing climate projections to observations up to 2011. Environ. Res. Lett. 7, 044035 (2012).

    Article  Google Scholar 

  81. 81

    Knutson, T. R. et al. Tropical cyclones and climate change. Nature Geosci. 3, 157–163 (2010).

    CAS  Article  Google Scholar 

  82. 82

    Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. Wetland sedimentation from hurricanes Katrina and Rita. Science 314, 449–452 (2006).

    CAS  Article  Google Scholar 

  83. 83

    Mariotti, G. & Carr, J. Dual role of salt marsh retreat: long-term loss and short-term resilience. Water Resour. Res. 50, 2963–2974 (2014).

    Article  Google Scholar 

  84. 84

    Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    CAS  Article  Google Scholar 

  85. 85

    Weston, N. B. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuar. Coasts 37, 1–23 (2014).

    Article  Google Scholar 

  86. 86

    Gunnell, J. R., Rodriguez, A. B. & McKee, B. A. How a marsh is built from the bottom up. Geology 41, 859–862 (2013).

    Article  Google Scholar 

  87. 87

    Williams, K. et al. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80, 2045–2063 (1999).

    Article  Google Scholar 

  88. 88

    Kirwan, M. L., Kirwan, J. L. & Copenheaver, C. A. Dynamics of an estuarine forest and its response to rising sea level. J. Coastal Res. 23, 457–463 (2007).

    Article  Google Scholar 

  89. 89

    Doyle, T. W. et al. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Forest Ecol. Manag. 259, 770–777 (2010).

    Article  Google Scholar 

  90. 90

    Raabe, E. A. & Stumpf, R. P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuar. Coasts. 39, 145–157 (2016).

    Article  Google Scholar 

  91. 91

    Hussein, A. H. Modeling of sea-level rise and deforestation in submerging coastal ultisols of Chesapeake Bay. Soil Sci. Soc. Am. J. 73, 185–196 (2009).

    CAS  Article  Google Scholar 

  92. 92

    Fagherazzi, S. The ephemeral life of a salt marsh. Geology 41, 943–944 (2013).

    Article  Google Scholar 

  93. 93

    Walters, D. C. & Kirwan, M. L. 2015. Sea level drives marsh expansion into upland areas. Coastal and Estuarine Research Federation Biennial Meeting, abstr. 0480–001150 (2015).

  94. 94

    Feagin, R. A., Martinez, M. L., Mendoza-Gonzalez, G. & Costanza, R. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecology Society 15, 14 (2010).

    Article  Google Scholar 

  95. 95

    Morris, J. T., Edwards, J., Crooks, S. & Reyes, E. in Recarbonization of the biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R. et al.) 517–531 (Springer, 2012).

    Book  Google Scholar 

  96. 96

    Center for Coastal Resource Management. The Chesapeake Bay Shoreline Inventory (2014); http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/index.html

  97. 97

    Wolters, M., Garbutt, A. & Bakker, J. P. Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe. Biol. Conserv. 123, 249–268 (2005).

    Article  Google Scholar 

  98. 98

    Van der Wal, D. & Pye, K. Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK). Geomorphology 61, 373–391 (2004).

    Article  Google Scholar 

  99. 99

    Van der Wal, D., Wielemaker-Van den Dool, A. & Herman, P. M. J. Spatial patterns, rates and mechanisms of saltmarsh cycles (Westerschelde, The Netherlands). Estuar. Coast. Shelf Sci. 76, 357–368 (2008).

    Article  Google Scholar 

  100. 100

    Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Cahoon, J. French, P. Hensel, K. McKee, D. Reed, N. Saintilan, and T. Spencer for their generosity in sharing data that contributed to Fig. 1. J. Smith provided the photograph in Fig. 4a. This work was supported financially by the US Geological Survey Climate and Land Use Change Research and Development Program (G.R.G. and M.L.K), NSF 1237733 (M.L.K and S.F), NSF 1426981 (M.L.K), NSF 1354251 (S.F.), FWO K2.174.14N (S.T.) and UA-BOF DOCPRO (S.T.). Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the US Government. This is contribution number 3510 of the Virginia Institute of Marine Science.

Author information

Affiliations

Authors

Contributions

M.L.K. designed the study, E.E.S. conducted the meta-analysis, and all authors wrote the paper.

Corresponding author

Correspondence to Matthew L. Kirwan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 251 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirwan, M., Temmerman, S., Skeehan, E. et al. Overestimation of marsh vulnerability to sea level rise. Nature Clim Change 6, 253–260 (2016). https://doi.org/10.1038/nclimate2909

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing