Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biophysical and economic limits to negative CO2 emissions

Abstract

To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic representation of carbon flows among atmospheric, land, ocean and geological reservoirs.
Figure 2: Scenarios including NETs for each of the scenario categories, corresponding to the ranges and median values shown in Supplementary Table 3.
Figure 3: The different requirements and impacts of NETs.
Figure 4: The impacts and investment requirements of NETs to meet the 2 °C target.

References

  1. Le Quéré, C. et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–185 (2013).

    Google Scholar 

  2. Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nature Clim. Change 3, 4–6 (2013). A short article outlining the enormous challenge of meeting a 2 °C climate stabilization target.

    Google Scholar 

  3. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014). The latest IPCC Assessment Report on the mitigation options that are available to stabilize the climate.

  4. Tavoni, M. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Clim. Change 5, 119–126 (2015).

    Google Scholar 

  5. Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there — energy technology transformation pathways in the EMF27 scenarios. Clim. Change 123, 369–382 (2014).

    Google Scholar 

  6. Edmonds, J. et al. Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2 capture and storage? Clim. Change 118, 29–43 (2013).

    Google Scholar 

  7. Van Vuuren, D. P. et al. The role of negative CO2 emissions for reaching 2 °C — insights from integrated assessment modelling. Clim. Change 118, 15–27 (2013).

    Google Scholar 

  8. Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79–83 (2013).

    Google Scholar 

  9. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  10. Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. 90, 8–23 (2015).

    Google Scholar 

  11. Obersteiner, M. et al. Managing climate risk. Science 294, 786–787 (2001).

    CAS  Google Scholar 

  12. Creutzig F. et al. Bioenergy and climate change mitigation: an assessment. Global Change Biol. Bioenergy 7, 916–944 (2015).

    CAS  Google Scholar 

  13. Keith, D. Why capture CO2 from the atmosphere. Science 325, 1654–1655 (2009).

    CAS  Google Scholar 

  14. Socolow, R. et al. Direct air capture of CO2 with chemicals: a technology assessment for the APS Panel on Public Affairs. (American Physical Society, 2011). An in-depth assessment of direct air-capture technologies.

    Google Scholar 

  15. Schuiling, R. D. & Krijgsman, P. Enhanced weathering: an effective and cheap tool to sequester CO2 . Climatic Change 74, 349–354 (2006).

    CAS  Google Scholar 

  16. Rau, G. H., Knauss, K. G., Langer, W. H. & Caldeira, K. Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 32, 1471–1477 (2007).

    CAS  Google Scholar 

  17. Köhler, P., Hartmann, J. & Wolf-Gladrow, D. A. Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc. Natl Acad. Sci. USA 107, 20228–20233 (2010).

    Google Scholar 

  18. Hartmann, J. & Kempe, S. What is the maximum potential for CO2 sequestration by “stimulated” weathering on the global scale? Naturwissenschaften 95, 1159–1164 (2008).

    CAS  Google Scholar 

  19. Kelemen, P. B. & Matter, J. M. In situ carbonation of peridotite for CO2 storage. Proc. Natl Acad. Sci. USA 105, 17295–17300 (2008).

    CAS  Google Scholar 

  20. Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nature Geosci. 4, 514–518, (2011).

    CAS  Google Scholar 

  21. Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).

    CAS  Google Scholar 

  22. Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).

    Google Scholar 

  23. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    CAS  Google Scholar 

  24. Joos, F., Sarmiento, J. L. & Siegenthaler, U. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349, 772–775 (1991).

    CAS  Google Scholar 

  25. Kheshgi, H. S. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20, 915–922 (1995).

    CAS  Google Scholar 

  26. Smith, P. Soils and climate change. Curr. Opin. Environ. Sust. 4, 539–544 (2012).

    Google Scholar 

  27. Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nature Clim. Change 4, 678–683 (2014).

    Google Scholar 

  28. Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    CAS  Google Scholar 

  29. Woolf, D., Amonette, J. E., Street-Perrott. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nature Commun. 1, 56 (2010).

    Google Scholar 

  30. Schiermeier, Q. Convention discourages ocean fertilization. Nature http://dx.doi.org/10.1038/news.2007.230 (2007).

  31. Smith, P. et al. How much land based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biol. 19, 2285–2302 (2013).

    Google Scholar 

  32. Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  33. Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Global Change Biol. (in the press).

  34. Azar, C. et al. The feasibility of low CO2 concentration targets and the role of bio-energy carbon-capture and storage. Clim. Change 100, 195–202 (2010).

    CAS  Google Scholar 

  35. Kriegler, E. et al. What does the 2°C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim. Change Econ. 04, 1340008 (2013).

    Google Scholar 

  36. Strengers, B. J., Minnen, J. G. V. & Eickhout, B. The role of carbon plantations in mitigating climate change: potentials and costs. Clim. Change 88, 343–366 (2008).

    CAS  Google Scholar 

  37. Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    CAS  Google Scholar 

  38. Reilly, J. et al. Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environ. Sci. Technol. 46, 5672–5679 (2012).

    CAS  Google Scholar 

  39. Humpenöder, F. et al. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9, 064029 (2014).

    Google Scholar 

  40. Chen, C. & Tavoni, M. Direct air capture of CO2 and climate stabilization: a model based assessment. Clim. Change 118, 59–72 (2013).

    CAS  Google Scholar 

  41. Fuss, S. et al. Betting on negative emissions. Nature Clim. Change 4, 850–853 (2014).

    CAS  Google Scholar 

  42. Kriegler E. et al. Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Clima. Change 118, 45–57 (2013).

    CAS  Google Scholar 

  43. Sims, R. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  44. Kriegler, E. et al. Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy. Technological Forecasting and Social Change, Part A 90, 24–44 (2015). A study showing the impact of delay in implementation of mitigation on climate stabilization over the course of the twenty-first century.

    Google Scholar 

  45. National Academy of Sciences. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (National Academies Press, 2015). An in-depth report on carbon dioxide removal (equivalent to negative emissions) technologies.

  46. Calvin, K. et al. A multi-model analysis of the regional and sectoral roles of bioenergy in near-and long-term CO2 emissions reduction. Clim. Change Econ. 4, 1340014 (2013).

    Google Scholar 

  47. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495–509 (2014).

    Google Scholar 

  48. Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Global Change Biol. Bioenergy http://dx.doi.org/10.1111/gcbb.12226 (2014).

  49. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geosci. 8, 441–444 (2015).

    CAS  Google Scholar 

  50. Smith, L. J. & Torn, M. S. Ecological limits to terrestrial biological carbon dioxide removal. Clim. Change 118, 89–103 (2013). A study examining some ecological limits to land-based negative emission technologies.

    CAS  Google Scholar 

  51. Scott, V., Haszeldine, R. S., Tett, S. F. B. & Oschlies, A. Fossil fuels in a trillion tonne world. Nature Clim. Change 5, 419–423 (2015).

    CAS  Google Scholar 

  52. Benson, S. M. et al. in Global Energy Assessment Toward a Sustainable Future Ch. 13 (Cambridge Univ. Press, 2012).

    Google Scholar 

  53. Zhao, K. & Jackson, R. B. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr. 84, 329–353 (2014).

    Google Scholar 

  54. Zhuang, Q., Qin, Z & Chen, M. Biofuel, land and water: maize, switchgrass or Miscanthus? Environ. Res. Lett. 8, 015020 (2013).

    Google Scholar 

  55. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).

  56. Renforth, P. The potential of enhanced weathering in the UK. Int. J. Greenh. Gas Con. 10, 229–243 (2012).

    CAS  Google Scholar 

  57. Christian, D., Riche, A. B. & Yales, N. E. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind. Crop Prod. 28, 320–327 (2008).

    Google Scholar 

  58. St Clair, S., Hiller, J. & Smith, P. Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass Bioenergy 32, 442–452 (2008).

    CAS  Google Scholar 

  59. Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).

    CAS  Google Scholar 

  60. Ma, D., Notaro, M., Liu, Z. Y., Chen, G. S. & Liu, Y. Q. Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability. Clim. Dynam. 41, 2439–2450 (2013).

    Google Scholar 

  61. Betts, A. K. & Ball, J. H. Albedo over the boreal forest. J. Geophys. Res. 102, 28901–28910 (1997).

    Google Scholar 

  62. Betts R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2007).

    Google Scholar 

  63. Betts R. A., Falloon, P. D., Goldewijk, K. K. & Ramankutty, N. Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agr. Forest Meteorol. 142, 216–233 (2007).

    Google Scholar 

  64. Schaeffer, M. et al. CO2 and albedo climate impacts of extratropical carbon and biomass plantations. Global Biogeochem. Cy. 20, GB2020 (2006).

    Google Scholar 

  65. Jones, A. D. et al. Greenhouse gas policy influences climate via direct effects of land-use change. J. Clim. 26, 3657–3670 (2013).

    Google Scholar 

  66. Mazzotti, M., Bociocchi, R., Desmond, M. J. & Socolow, R. Direct air capture of CO2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air-liquid contactor. Clim. Change 118, 119–135 (2013).

    CAS  Google Scholar 

  67. Klein, D. et al. The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Clim. Change 123, 705–718 (2014).

    Google Scholar 

  68. Lenton, T. M. in Geoengineering of the Climate System (eds Harrison, R. M. & Hester, R. E.) (Royal Society of Chemistry, 2014).

    Google Scholar 

  69. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    CAS  Google Scholar 

  70. Schueler, V., Weddige, U., Beringer, T., Gamba, L. & Lamers, P. Global biomass potentials under sustainability restrictions defined by the European Renewable Energy Directive 2009/28/EC. Global Change Biol. Bioenergy 5, 652–663 (2013).

    Google Scholar 

  71. FAOSTAT (accessed 25 June 2015); http://faostat3.fao.org/home/E

  72. Canadell, J. G., Schulze, E.-D. Global potential of biospheric carbon management for climate mitigation. Nature Commun. 5, 5282 (2014).

    Google Scholar 

  73. Smith, P. et al. Competition for land. Phil. Trans. R. Soc. B 365, 2941–2957 (2010).

    Google Scholar 

  74. Thompson, B. & Cohen, M. J. The impact of climate change and bioenergy on nutrition (Springer, 2012).

    Google Scholar 

  75. Valentine, J., Clifton-Brown, J., Hastings, A., Robson, P, Allison G. & Smith, P. Food vs. fuel: the use of land for lignocellulosic 'next generation' energy crops that minimise competition with primary food production. Global Change Biol. Bioenergy 4, 1–19 (2012).

    Google Scholar 

  76. Bustamante, M. et al. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the Agriculture, Forestry and Other Land Use (AFOLU) sector. Global Change Biol. 20, 3270–3290 (2014).

    Google Scholar 

  77. Powell, T. W. R. & Lenton, T. M. Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci. 5, 8116–8133 (2012).

    CAS  Google Scholar 

  78. Smith, P. Delivering food security without increasing pressure on land. Global Food Sec. 2, 18–23 (2013).

    Google Scholar 

  79. Bajželj, B. et al. The importance of food demand management for climate mitigation. Nature Clim. Change 4, 924–929 (2014).

    Google Scholar 

  80. Vörösmarty, C. J. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Google Scholar 

  81. Stolaroff, J. K., Keith, D. W. & Lowry, G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ. Sci. Technol. 42, 2728–2735 (2008).

    CAS  Google Scholar 

  82. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    CAS  Google Scholar 

  83. Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human appropriation of renewable freshwater. Science 271, 785–788 (1996).

    CAS  Google Scholar 

  84. Rockstrom, J. et al. The unfolding water drama in the Anthropocene: towards a resilience-based perspective on water for global sustainability. Ecohydrol. 7, 1249–1261 (2014).

    Google Scholar 

  85. Creutzig, F. et al. Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nature Clim. Change 2, 320–327 (2012).

    Google Scholar 

  86. Cowie, A. L., Smith, P. & Johnson, D. Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitigation Adapt. Strateg. Global Chang. 11, 979–1002 (2006).

    Google Scholar 

  87. McCollum, D. et al. Energy investments under climate policy: a comparison of global models. Clim. Change Econ. 4, 1340010 (2013).

    Google Scholar 

  88. Creutzig, F. Economic and ecological views on climate change mitigation with bioenergy and negative emissions. Global Change Biol. Bioenergy http://dx.doi.org/10.1111/gcbb.12235 (2015).

  89. Kato, E. & Yamagata, Y. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions. Earth's Future 2, 421–439 (2014).

    Google Scholar 

  90. Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., Haszeldine, R. S. Last chance for carbon capture and storage. Nature Clim. Change 3, 105–111 (2012).

    Google Scholar 

  91. Blackford, J. et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Clim. Change 4, 1011–1016 (2014).

    CAS  Google Scholar 

  92. Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013). A study showing the urgency of climate mitigation action.

    Google Scholar 

  93. Gasser, T., Guivarch, G., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2°C. Nature Commun. 6, 7958 (2015).

    CAS  Google Scholar 

  94. Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions. (Carbon Dioxide Information Analysis Center, 2015).

  95. Krey, V. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Annex Ch. 2, 1308–1318 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

Download references

Acknowledgements

The views expressed herein are those of the authors, and do not represent those of a particular governmental agency or interagency body. This analysis was initiated at a Global Carbon Project meeting on NETs in Laxenburg, Austria, in April 2013 and contributes to the MaGNET program (http://www.cger.nies.go.jp/gcp/magnet.html). G.P.P. was supported by the Norwegian Research Council (236296). C.D.J. was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). J.G.C. acknowledges support from the Australian Climate Change Science Program. E.Ka. and Y.Y. were supported by the ERTDF (S-10) from the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Contributions

P.S. led the writing of the paper, with contributions from all authors in the inception of the study and in writing the drafts. P.S. led the analysis with significant contributions from S.J.D., F.C., S.F., J.M., B.G., R.B.J., A.C., E.Kr., D.M. and D.V.V. Figures were conceptualized and produced by S.J.D., J.R., P.C., S.F., P.S., G.P., R.A. and J.M.

Corresponding author

Correspondence to Pete Smith.

Ethics declarations

Competing interests

M.O. was given a share in Biorecro, a company that cooperates with BECCS projects globally, honouring his pioneering work on BECCS. The other authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 946 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, P., Davis, S., Creutzig, F. et al. Biophysical and economic limits to negative CO2 emissions. Nature Clim Change 6, 42–50 (2016). https://doi.org/10.1038/nclimate2870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2870

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing