Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Benefits of tree mixes in carbon plantings

Abstract

Increasingly governments and the private sector are using planted forests to offset carbon emissions. Few studies, however, examine how tree diversity — defined here as species richness and/or stand composition — affects carbon storage in these plantings. Using aboveground tree biomass as a proxy for carbon storage, we used meta-analysis to compare carbon storage in tree mixtures with monoculture plantings. Tree mixes stored at least as much carbon as monocultures consisting of the mixture's most productive species and at times outperformed monoculture plantings. In mixed-species stands, individual species, and in particular nitrogen-fixing trees, increased stand biomass. Further motivations for incorporating tree richness into planted forests include the contribution of diversity to total forest carbon-pool development, carbon-pool stability and the provision of extra ecosystem services. Our findings suggest a two-pronged strategy for designing carbon plantings including: (1) increased tree species richness; and (2) the addition of species that contribute to carbon storage and other target functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C sequestration and storage comparisons in mixed versus monoculture plantings.
Figure 2: Mean effect sizes (unlogged) and 95% CI for average biomass increase in different categories.
Figure 3: Hypothetical long-term C storage in individual and summed C pools, mixed versus monoculture plantings.
Figure 4: Postulated C storage over time for mixed versus monoculture plantings.

Similar content being viewed by others

References

  1. Hunt, C. Economy and ecology of emerging markets and credits for bio-sequestered carbon on private land in tropical Australia. Ecol. Econ. 66, 309–318 (2008).

    Article  Google Scholar 

  2. Chazdon, R. L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    Article  CAS  Google Scholar 

  3. Diaz, D., Hamilton, K. & Johnson, E. State of the Forest Carbon Markets 2011: From Canopy to Currency (Forest Trends' Ecosystem Markeplace, 2011); http://go.nature.com/gWqaM3

    Google Scholar 

  4. Böttcher, H. & Lindner, M. in Ecosystem Goods and Services from Plantation Forests (eds Bauhus, J., van der Meer, P. J. & Kanninen, M.) 43–76 (Earthscan, 2010).

    Google Scholar 

  5. Cardinale, B. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  Google Scholar 

  6. Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

    Article  Google Scholar 

  7. Díaz, S., Hector, A. & Wardle, D. A. Biodiversity in forest carbon sequestration initiatives: Not just a side benefit. Curr. Opin. Environ. Sustain. 1, 55–60 (2009).

    Article  Google Scholar 

  8. Díaz, S., Wardle, D. A. & Hector, A. in Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds Naeem, S. et al.) 149–166 (Oxford Univ. Press, 2009).

    Book  Google Scholar 

  9. McKinley, D. C. et al. A synthesis of current knowledge on forests and carbon storage in the United States. Ecol. Appl. 21, 1902–1924 (2011).

    Article  Google Scholar 

  10. Crossman, N. D., Bryan, B. A. & Summers, D. M. Carbon payments and low-cost conservation. Conserv. Biol. 25, 835–845 (2011).

    Article  Google Scholar 

  11. Harper, R. J. et al. The potential of greenhouse sinks to underwrite improved land management. Ecol. Eng. 29, 329–341 (2007).

    Article  Google Scholar 

  12. Kossoy, A. & Guigon, P. State and Trends of the Carbon Market 2012 (Carbon Finance, World Bank, 2012).

    Google Scholar 

  13. Potvin, C. et al. An ecosystem approach to biodiversity effects: Carbon pools in a tropical tree plantation. Forest Ecol. Manage. 261, 1614–1624 (2011).

    Article  Google Scholar 

  14. Scherer-Lorenzen, M., Schulze, E-D., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE). Perspect. Plant Ecol. 9, 53–70 (2007).

    Article  Google Scholar 

  15. Hooper, D. et al. Effects of biodiversity on ecosystem functioning: A concensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article  Google Scholar 

  16. Gifford, R. M. Carbon Contents of Above-ground Tissues of Forest and Woodland Trees Technical Report No. 22 (Australian Greenhouse Office, 2000).

    Google Scholar 

  17. Fahey, T. et al. Forest carbon storage: Ecology, management, and policy. Front. Ecol. Environ. 8, 245–252 (2010).

    Article  Google Scholar 

  18. Piotto, D. A meta-analysis comparing tree growth in monocultures and mixed plantations. Forest Ecol. Manage. 255, 781–786 (2008).

    Article  Google Scholar 

  19. Vilá, M., Vayreda, J., Gracia, C. & Ibáñez, J. J. Does tree diversity increase wood production in pine forests? Oecologia 135, 299–303 (2003).

    Article  Google Scholar 

  20. Austin, M. T. Short-rotation biomass trial of mixed and pure stands of nitrogen-fixing trees and Eucalyptus grandis. Austral. For. 60, 161–168 (1997).

    Article  Google Scholar 

  21. Parrotta, J. Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. Forest Ecol. Manage. 124, 45–77 (1999).

    Article  Google Scholar 

  22. Gurevitch, J. & Hedges, L. V. in Design and Analysis of Ecological Experiments (eds Scheiner, S. M. & Gurevitch, J.) 349–369 (Oxford Univ. Press, 2001).

    Google Scholar 

  23. Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).

    Article  Google Scholar 

  24. MetaWin: Statistical Software for Meta-Analysis v.2.0 (Sinaurer Associates, 1999).

  25. Vilá, M. et al. Species richness and wood production: A positive association in Mediterranean forests. Ecol. Lett. 10, 241–250 (2007).

    Article  Google Scholar 

  26. Forrester, D. I., Bauhus, J. & Cowie, A. L. Carbon allocation in a mixed-species plantation of Eucaluptus globulus and Acacia mearnsii. Forest Ecol. Manage. 233, 275–284 (2006).

    Article  Google Scholar 

  27. Erskine, P. D., Lamb, D. & Bristow, M. Tree species diversity and ecosystem function: Can tropical multi-species plantations generate greater productivity? Forest Ecol. Manage. 233, 205–210 (2006).

    Article  Google Scholar 

  28. Binkley, D., Senock, R., Bird, S. & Cole, T. G. Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and nitrogen-fixing Facaltaria moluccana. Forest Ecol. Manage. 182, 93–102 (2003).

    Article  Google Scholar 

  29. Piotto, D., Craven, D., Montagnini, F. & Alice, F. Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New Forest. 39, 369–385 (2010).

    Article  Google Scholar 

  30. Pretzsch, H. & Schütz, G. Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: Evidence on stand level and explaination on individual tree level. Eur. J. For. Res. 128, 183–204 (2009).

    Article  Google Scholar 

  31. Forrester, D. I., Cowie, A. L., Bauhus, J., Wood, J. T. & Forrester, R. I. Effects of changing the supply of nitrogen and phosphorus on growth and interactions between Eucalyptus globulus and Acacia mearnsii in a pot trial. Plant Soil 280, 267–277 (2006).

    Article  CAS  Google Scholar 

  32. Kaye, J. P., Resh, S. C., Kaye, M. W. & Chimner, R. A. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81, 3267–3273 (2000).

    Article  Google Scholar 

  33. Marquard, E. et al. Plant species richness and functional group composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302 (2009).

    Article  Google Scholar 

  34. Perring, M. P. et al. The Ridgefield Multiple Ecosystem Services Experiment: Can restoration of former agricultural land achieve multiple outcomes? Agr. Ecosyst. Environ. 163, 14–27 (2012).

    Article  Google Scholar 

  35. Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).

    Article  CAS  Google Scholar 

  36. Vesterdal, L. et al. in Environmental Efects of Aforestation in North-Western Europe (eds Heil, G. W. et al.) 19–51 (Springer, 2007).

    Book  Google Scholar 

  37. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article  CAS  Google Scholar 

  38. Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    Article  CAS  Google Scholar 

  39. Diaz, D. Moving beyond the buffer pool. Ecosystem Marketplace (November 30 2010); http://go.nature.com/S4DfCn

  40. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article  CAS  Google Scholar 

  41. Jactel, H. & Brockerhoff, E. G. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 10, 835–848 (2007).

    Article  Google Scholar 

  42. Woods, A., Coates, K. D. & Hamann, A. Is an unprecedented Dothistroma needle blight epidemic related to climate change? Bioscience 55, 761–769 (2005).

    Article  Google Scholar 

  43. Bekessy, S. A. & Wintle, B. A. Using carbon investment to grow the biodiversity bank. Conserv. Policy 22, 510–513 (2008).

    Google Scholar 

  44. Ecosystems and Human Well-being: Biodiversity Synthesis (Milleneium Ecosystem Assessment, World Resources Institute, 2005).

  45. Nadrowski, K., Wirth, C. & Scherer-Lorenzen, M. Is forest diversity driving ecosystem function and service? Curr. Opin. Environ. Sustain. 2, 75–79 (2010).

    Article  Google Scholar 

  46. Hartley, M. J. Rationale and methods for conserving biodiversity in plantation forests. Forest Ecol. Manage. 155, 81–95 (2002).

    Article  Google Scholar 

  47. Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world's upland forests. Oecologia 111, 1–11 (1997).

    Article  Google Scholar 

  48. Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root : shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).

    Article  Google Scholar 

  49. Compliance Offset Protocol U.S. Forest Projects (Air Resources Board, CEPA, 2011); http://go.nature.com/HVqaof.

  50. The Carbon Farming Initiative Handbook Version 1 (Department of Climate Change and Energy Efficiency, Australian Government, 2012); http://go.nature.com/YFuaEQ

  51. Methodology Determinations (Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education, Australian Government, 2013); http://go.nature.com/54tcXg

Download references

Acknowledgements

We acknowledge funding support from the Australian Research Council, through an Australian Laureate Fellowship to R.J.H., the ARC Centre of Excellence for Environmental Decisions and the National Environmental Research Program Environmental Decisions Research Hub.

Author information

Authors and Affiliations

Authors

Contributions

K.H. collected and reviewed the literature, conducted meta-analysis and wrote the manuscript. All authors contributed to the ideas presented and edited the manuscript; K.H. created Figs 1, 2, and 4; M.P. and K.H. created Fig. 3.

Corresponding author

Correspondence to Kristin B. Hulvey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Background information for studies included in meta-analyses. (PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulvey, K., Hobbs, R., Standish, R. et al. Benefits of tree mixes in carbon plantings. Nature Clim Change 3, 869–874 (2013). https://doi.org/10.1038/nclimate1862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing