Greenhouse-gas emissions from energy use in the water sector

Abstract

Water management faces great challenges over the coming decades. Pressures include stricter water-quality standards, increasing demand for water and the need to adapt to climate change, while reducing emissions of greenhouse gases. The processes of abstraction, conveyance and treatment of fresh water and wastewater all demand energy. Energy use in the water sector is growing, yet its importance is under-recognized, and gaps remain in our knowledge. Here we define the need to integrate energy use further into water resource management and identify opportunities for the water sector to understand and describe more effectively its role in greenhouse-gas emissions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A conceptual model of water-sector processes involving energy use.
Figure 2: Distribution of carbon emissions from energy use in the US water sector (%).
Figure 3: Water flow and greenhouse-gas emissions from the UK water sector, 2005–06.
Figure 4: Freshwater withdrawals by sector in 2000 (%).
Figure 5: Overview of factors affecting energy use for groundwater irrigation.
Figure 6: Energy use for irrigation.

References

  1. 1

    King, C. W., Holman, A. S. & Webber, M. E. Thirst for energy. Nature Geosci. 1, 283–286 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Curlee, T. N. & Sale, M. J. in Conf. Water Security in the 21st Century, 22 (Environmental Science Division, 2003).

    Google Scholar 

  3. 3

    US Department of Energy Energy Demands on Water Resources (US DOE, 2006).

  4. 4

    Goldstein, R. & Smith, W. Water and Sustainability: US Electricity Consumption for Water Supply and Treatment: The Next Half Century (Electric Power Research Institute, 2002).

    Google Scholar 

  5. 5

    Gleick, P. H. Water and energy. Annu. Rev. Energ. Environ. 19, 267–299 (1994).

    Article  Google Scholar 

  6. 6

    Ainger, C. et al. A Low Carbon Water Industry in 2050 (Environment Agency, 2009).

    Google Scholar 

  7. 7

    Council for Science & Technology Improving Innovation in the Water Industry: 21st Century Challenges and Opportunities (CST, 2009).

  8. 8

    Department for Environment Food and Rural Affairs Future Water. The Government's Water Strategy for England (Stationery Office, 2008).

  9. 9

    UK Water Industry Research Energy Efficiency in the UK Water Industry: A Compendium of Best Practices and Case Studies (UK WIR, 2010).

  10. 10

    Griffiths-Sattenspiel, B. & Wilson, W. The Carbon Footprint of Water (River Network, 2009).

    Google Scholar 

  11. 11

    Shah, T. Climate change and groundwater: India's opportunities for mitigation and adaptation. Environ. Res. Lett. 4, 035005 (2009).

    Article  Google Scholar 

  12. 12

    http://water-energy.lbl.gov/node/10

  13. 13

    Khan, S. & Hanjra, M. A. Footprints of water and energy inputs in food production: global perspectives. Food Policy 34, 130–140 (2009).

    Article  Google Scholar 

  14. 14

    Khan, S., Khan, M. A., Hanjra, M. A. & Mu, J. Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy 34, 141–149 (2009).

    Article  Google Scholar 

  15. 15

    Nelson, G. C. et al. Greenhouse Gas Mitigation. Issues for Indian Agriculture. Vol. I FPRI Discussion Paper 00900 (International Food Policy Research Institute, Environment and Production Technology Division, 2009).

    Google Scholar 

  16. 16

    Frijns, J. Towards a common carbon footprint assessment methodology for the water sector. Wat. Environ. J. 25, 10.1111/j.1747-6593201100264.x (2011).

  17. 17

    Friedrich, E., Pillay, S. & Buckley, C. A. The use of LCA in the water industry and the case for an environmental performance indicator. Wat. SA 33, 443–451 (2007).

    Google Scholar 

  18. 18

    Stokes, J. R. & Horvath, A. Energy and air emission effects of water supply. Environ. Sci. Technol. 43, 2680–2687 2009).

    CAS  Article  Google Scholar 

  19. 19

    Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article  Google Scholar 

  20. 20

    Harte, J. & Elgasseir, M. Energy and water. Science 199, 623–634 (1978).

    CAS  Article  Google Scholar 

  21. 21

    Hightower, M. & Pierce, S. A. The energy challenge. Nature 452, 285–286 (2008).

    CAS  Article  Google Scholar 

  22. 22

    IPCC Technical Paper on Climate Change and Water (eds Bates, B., Kundzewicz, Z. W., Palutikof, J. & Wu, S.) (IPCC Secretariat, 2008).

  23. 23

    IPCC Climate Change 2007: Mitigation (eds Metz, B. et al.) (Cambridge Univ. Press, 2007).

  24. 24

    Smith, P. et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agr. Ecosyst. Environ. 118, 6–28 (2007).

    Article  Google Scholar 

  25. 25

    Lofman, D., Petersen, M. & Bower, A. Water, energy and environment nexus: The California experience. Int. J. Wat. Resour. Dev. 18, 73–85 (2002).

    Article  Google Scholar 

  26. 26

    Abbott, M. & Cohen, B. Productivity and efficiency in the water industry. Util. Policy 17, 233–244 (2009).

    Article  Google Scholar 

  27. 27

    Cederwall, W., Shady, A. & Bjorklund, G. Workshop 4 (synthesis): Bridge building between water and energy. Wat. Sci. Technol. 45, 149–150 (2002).

    Article  Google Scholar 

  28. 28

    Zakkour, P. D., Gochin, R. J. & Lester, J. N. Evaluating sustainable energy strategies for a water utility. Environ. Technol. 23, 823–838 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Zakkour, P. D., Gaterell, M. R., Griffin, P., Gochin, R. J. & Lester, J. N. Developing a sustainable energy strategy for a water utility. Part I. A review of the UK legislative framework. J. Environ. Manage. 66, 105–114 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Cohen, R., Nelson, B. & Wolff, G. Energy Down the Drain. The Hidden Costs of California's Water Supply (Pacific Institute & Natural Resources Defense Council, 2004).

    Google Scholar 

  31. 31

    Klein, G. California's Water–Energy Relationship (California Energy Commission, 2005).

    Google Scholar 

  32. 32

    Malik, R. P. S. Water–energy nexus in resource-poor economies: The Indian experience. Int. J. Wat. Resour. Dev. 18, 47–58 (2002).

    Article  Google Scholar 

  33. 33

    Zakkour, P. D., Gaterell, M. R., Griffin, P., Gochin, R. J. & Lester, J. N. Developing a sustainable energy strategy for a water utility. Part II. A review of potential technologies and approaches. J. Environ. Manage. 66, 115–125 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Bruinsma, J. (ed.) World Agriculture: Towards 2015/2030. An FAO Perspective. (Earthscan, 2003).

    Google Scholar 

  35. 35

    Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Climatic Change 54, 269–293 (2002).

    Article  Google Scholar 

  36. 36

    Fischer, G., Tubiello, F. N., van Velthuizen & Wiberg, D. A. Climate Change Impacts on Irrigation Water Requirements: Effects of Mitigation, 1990–2080 (IIASA reprint, 2007).

    Google Scholar 

  37. 37

    Rosenberg, N. J., Brown, R. A., Izaurralde, R. C. & Thomson, A. M. Integrated assessment of Hadley Centre (HadCM2) climate change projections on agricultural productivity and irrigation water supply in the conterminous United States. I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model. Agr. Forest Meteorol. 117, 73–96 (2003).

    Article  Google Scholar 

  38. 38

    Xiong, W. et al. Climate change, water availability and future cereal production in China. Agr. Ecosyst. Environ. 135, 58–69 (2010).

    Article  Google Scholar 

  39. 39

    Sauer, T. et al. Agriculture and resource availability in a changing world: The role of irrigation. Wat. Resour. Res. 46, W06503 (2010).

    Article  Google Scholar 

  40. 40

    World Resource Institute Earth Trends: Environmental Information (WRI, 2000); available at http://earthtrends.wri.org/index.php.

  41. 41

    United Nations Food and Agriculture Organization Land and Water Division Weblink: FAO AquaSTAT (FAO, 2000).

  42. 42

    Mushtaq, S., Maraseni, T. N., Maroulis, J & Hafeez, M. Energy and water tradeoffs in enhancing food security: A selective international assessment. Energ. Policy 37, 3635–3644 (2009).

    Article  Google Scholar 

  43. 43

    Shah, T. et al. in Water for Food, Water for Life (ed. Molden, D.) Ch. 10 (Earthscan, 2007).

    Google Scholar 

  44. 44

    Allan, J. A. Virtual water: a strategic resource global solutions to regional deficits. Ground Water 36, 545–546 (1998).

    CAS  Article  Google Scholar 

  45. 45

    Hoekstra, A. Y. & Hung, P. Q. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Change A 15, 45–56 (2005).

    Article  Google Scholar 

  46. 46

    Cleveland, C. J. The direct and indirect use of fossil fuels and electricity in USA agriculture, 1910–1990 Agr. Ecosyst. Environ. 55, 111–121 (1995).

    Article  Google Scholar 

  47. 47

    Leach, G. Energy and food-production. Food Policy 1, 62–73 (1975).

    Article  Google Scholar 

  48. 48

    Devi, R. Energy consumption pattern of a decentralized community in northern Haryana. Renew. Sustain. Energ. Rev. 13, 194–200 (2009).

    Article  Google Scholar 

  49. 49

    Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–90 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Vlek, P. L. G., Rodriguez-Kuhl, G. & Sommer, R. Energy use and CO2 production in tropical agriculture and means and strategies for reduction or mitigation. Environ. Dev. Sust. 6, 213–233 (2004).

    Article  Google Scholar 

  51. 51

    Whiffen, H. H. Energy Efficiency and Environmental News: Energy Use In Irrigation, in Florida Energy Extension Service (Institute of Food and Agricultural Sciences, Univ. Florida, 1991).

    Google Scholar 

  52. 52

    Gupta, R. K. Water and energy linkages for groundwater exploitation: A case study of Gujarat state, India. Int. J. Wat. Resour. Dev. 18, 25–45 (2002).

    Article  Google Scholar 

  53. 53

    Singh, H., Mishra, D., Nahar, N. M. & Ranjan, M. Energy use pattern in production agriculture of a typical village in and zone India: part II. Energ. Convers. Manage. 44, 1053–1067 (2003).

    Article  Google Scholar 

  54. 54

    Shah, T., Roy, A. D., Qureshi, A. S. & Wang, J. Sustaining Asia's groundwater boom: An overview of issues and evidence. Nat. Resour. Forum 27, 130–141 (2003).

    Article  Google Scholar 

  55. 55

    Kahrl, F. & Roland-Holst, D. China's water-energy nexus. Wat. Policy 10 (Suppl. 1), 51–65 (2008).

    Article  Google Scholar 

  56. 56

    Wang, J., Huang, J., Rozelle, S., Huang, Q. & Blanke, A. Agriculture and groundwater development in northern China: Trends, institutional responses, and policy options. Wat. Policy 9 (Suppl. 1), 61–74 (2007).

    CAS  Article  Google Scholar 

  57. 57

    Khan, S., Hanjra, M. A. & Mu, J. Water management and crop production for food security in China: A review. Agr. Wat. Manage. 96, 349–360 (2009).

    Article  Google Scholar 

  58. 58

    Xuejun, S., Hong, W. & Zhaoyin, W. Interbasin transfer projects and their implications: A China case study. Int. J. River Basin Manage. 1, 5–14 (2003).

    Article  Google Scholar 

  59. 59

    Goldstein, N. C. et al. The energy–water nexus and information exchange: challenges and opportunities. Int. J. Water 4, 5–24 (2008).

    Article  Google Scholar 

  60. 60

    World Business Council for Sustainable Development Water, Energy and Climate Change. A Contribution from the Business Community (WBCSD, 2009).

  61. 61

    Friedrich, E., Pillay, S. & Buckley, C. A. Carbon footprint analysis for increasing water supply and sanitation in South Africa: a case study. J. Cleaner Prod. 17, 1–12 (2009).

    CAS  Article  Google Scholar 

  62. 62

    Amarasinghe, U. A., Giordano, M., Liao, Y. & Shu, Z. Water Supply, Water Demand and Agricultural Water Scarcity in China: A Basin Approach. CPSP Rep. 11. Vol. Country Policy Support Program (CPSP) (International Water Management Institute, International Commission on Irrigation and Drainage, 2005).

    Google Scholar 

  63. 63

    Mata, L. J. & Budhooram, J. Complementarity between mitigation and adaptation: the water sector. Mitig. Adapt. Strategies Glob. Change 12, 799–807 (2007).

    Article  Google Scholar 

  64. 64

    Clarke, A., Grant, N. & Thornton, J. Quantifying the Energy and Carbon Effects of Water Saving (Environment Agency, 2009).

    Google Scholar 

  65. 65

    Reffold, E., Leighton, F. Choudhury, F. & Rayner, P. S. Greenhouse Gas Emissions of Water Supply and Demand Management Options Science Report SC070010 (Environment Agency, 2008).

    Google Scholar 

  66. 66

    UK Water Industry Research Reports on Climate Change and the Water Industry (UK WIR, 2010); available via www.ukwir.org/site/web/content/reports/reports?FolderId=90265.

  67. 67

    Hoppock, D. C. & Webber, M. E. Energy needs and opportunities at POTWs in the United States. Proc. Am. Soc. Mech. Eng. (ASME) 2nd Int. Conf. Energy Sustain. (2008).

  68. 68

    Stillwell, A. S., Hoppock, D. C. & Webber, M. E. Energy recovery from wastewater treatment plants in the United States: a case study of the energy–water nexus. Sustainability 2, 945–962 (2010).

    Article  Google Scholar 

  69. 69

    Gleick, P. H. et al. Waste Not, Want Not: The Potential for Urban Water Conservation in California (Pacific Institute for Studies in Development, Environment, and Security, 2003).

    Google Scholar 

  70. 70

    Godfray, H. C. J. et al. Food Security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Article  Google Scholar 

  71. 71

    Döll, P. & Siebert, S. Global modeling of irrigation water requirements. Wat. Resour. Res. 38, 1037 (2002).

    Article  Google Scholar 

  72. 72

    Charlton, M. B. & Arnell, N. W. Adapting to climate change impacts on water resources in England: An assessment of draft Water Resources Management Plans. Glob. Environ. Change 21, 238–248 (2011).

    Article  Google Scholar 

  73. 73

    Farley, K. A., Tague, C. & Grant, G. E. Vulnerability of water supply from the Oregon Cascades to changing climate: Linking science to users and policy. Glob. Environ. Change 21, 110–122 (2011).

    Article  Google Scholar 

  74. 74

    Subak, S. Climate change adaptation in the UK water industry: managers' perceptions of past variability and future scenarios. Wat. Resour. Manage. 14, 137–156 (2000).

    Article  Google Scholar 

  75. 75

    Dominguez-Faus, R., Powers, S. E., Burken, J. G. & Alvarez, P. J. The water footprint of biofuels: a drink or drive issue? Environ. Sci. Technol. 43, 3005–3010 (2009).

    CAS  Article  Google Scholar 

  76. 76

    Gerbens-Leenes, W., Hoekstraa, A. Y. & van der Meerband, T. H. The water footprint of bioenergy. Proc. Natl Acad. Sci. USA 106, 10219–10223 (2009).

    CAS  Article  Google Scholar 

  77. 77

    McCornick, P. G., Awulachew, S. B. & Abebem, M. Water-food-energy–environment synergies and tradeoffs: major issues and case studies. Wat. Policy 10 (Suppl. 1), 23–36 (2008).

    Article  Google Scholar 

  78. 78

    Rajagopal, D. Implications of India's biofuel policies for food, water and the poor. Wat. Policy 10 (Suppl. 1), 95–106 (2008).

    Article  Google Scholar 

  79. 79

    de Fraiture, C., Giordano, M. & Liao, Y. S. Biofuels and implications for agricultural water use: blue impacts of green energy. Wat. Policy 10, 67–81 (2008).

    Article  Google Scholar 

  80. 80

    Twomey, K. M., Stillwell, A. S. & Webber, M. E. The unintended energy impacts of increased nitrate contamination from biofulels production. J. Environ. Monitor. 12, 218–224 (2010).

    CAS  Article  Google Scholar 

  81. 81

    Cooley, H., Christian-Smith, J. & Gleick, P. H. Sustaining California Agriculture in an Uncertain Future (Pacific Institute, 2009).

    Google Scholar 

  82. 82

    Jackson, T. M., Khan, S. & Hafeez, M. A comparative analysis of water application and energy consumption at the irrigated field level. Agr. Wat. Manage. 97, 1477–1485 (2010).

    Article  Google Scholar 

  83. 83

    Gleick, P. H. & Cooley, H. S. Energy implications of bottled water. Environ. Res. Lett. 4, 014009 (2009).

    Article  Google Scholar 

  84. 84

    Racoviceanu, A., Karney, B. W., Kennedy, C. A. & Colombo, A. F. Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems. J. Infrastruct. Syst. 13, 261–270 (2007).

    Article  Google Scholar 

  85. 85

    Singh, H., Singh, A. K., Kushwaha, H. L & Singh, A. Energy consumption pattern of wheat production in India. Energy 32, 1848–1854 (2007).

    Article  Google Scholar 

  86. 86

    Singh, S., Pannu, C. J. S. & Singh, J. Energy input and yield relations for wheat in different agro-climatic zones of the Punjab. Appl. Energ. 63, 287–298 (1999).

    Article  Google Scholar 

  87. 87

    Pathak, H. & Wassmann, R. Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients. Agr. Syst. 94, 807–825 (2007).

    Article  Google Scholar 

  88. 88

    Maraseni, T. N., Cockfield, G. & Maroulis, J. An assessment of greenhouse gas emissions: implications for the Australian cotton. J. Agr. Sci. 148, 501–510 (2010).

    CAS  Article  Google Scholar 

  89. 89

    Yaldiz, O., Ozturk, H. H., Zeren, Y. & Bascetincelik, A. Energy use in field crops of Turkey. Fifth Int. Congress Agricultural Machinery and Energy (Kusadası, 1993).

    Google Scholar 

  90. 90

    Erdal, G., Esengun, K. & Erdal, G. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 32, 35–41 (2007).

    Article  Google Scholar 

  91. 91

    Cicek, A., Altintas, G. & Erdal, G. Energy consumption patterns and economic analysis of irrigated wheat and rainfed wheat production: Case study for Tokat region, Turkey. J. Food Agr. Environ. 7, 639–644 (2009).

    Google Scholar 

  92. 92

    Topak, R., Acar, B. & Ugurlu, N. Analysis of energy use and input costs for irrigation in field crop production: a case study for the Konya plain of Turkey. J. Sustain. Agr. 33, 757–771 (2009).

    Article  Google Scholar 

  93. 93

    Acaroglu, M. & Aksoy, A. S. The cultivation and energy balance of Miscanthus giganteus production in Turkey. Biomass Bioenerg. 29, 42–48 (2005).

    Article  Google Scholar 

  94. 94

    Mohammadi, A., Tabatabaeefar, A., Shahin, S. Rafiee, S. & Kayhani, A. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energ. Convers. Manage. 49, 3566–3570 (2008).

    Article  Google Scholar 

  95. 95

    Shahan, S., Jafari, A., Mobli, H., Rafiee, S. & Karimi, M. Energy use and economical analysis of wheat production in Iran: A case study from Ardabil province. J. Agr. Technol. 4, 77–88 (2008).

    Google Scholar 

  96. 96

    Pervanchon, F., Bockstaller, C. & Girardin, P. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator. Agr. Syst. 72, 149–172 (2002).

    Article  Google Scholar 

  97. 97

    Rodrigues, G. C., Carvalho, S., Paredes, P., Silva, F. G. & Pereira, L. S. Relating energy performance and water productivity of sprinkler irrigated maize, wheat and sunflower under limited water availability. Biosyst. Eng. 106, 195–204 (2010).

    Article  Google Scholar 

  98. 98

    Moreno, M. A., Ortega, J. F., Corcoles, J. I, Martinez, A. & Tarjuelo, J. M. Energy analysis of irrigation delivery systems: monitoring and evaluation of proposed measures for improving energy efficiency. Irrig. Sci. 28, 445–460 (2010).

    Article  Google Scholar 

  99. 99

    Dalgaard, T., Halberg, N. & Porter, J. R. A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agr. Ecosyst. Environ. 87, 51–65 (2001).

    Article  Google Scholar 

  100. 100

    Tzilivakis, J., Warner, D. J., May, M., Lewis, K. A. & Jaggard, K. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agr. Syst. 85, 101–119 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The review was conducted as part of a project funded by the UK Department for Environment, Food and Rural Affairs: ADMIT—Harmonising adaptation and mitigation for agriculture and water in China (Grant No. D00383, www.sainonline.org). D.C. was partly supported through a Department for International Development Senior Research Fellow's position and a visiting fellowship to the Australian National Climate Change Adaptation Research Facility. We thank A. Milman for providing additional literature for this review. The views expressed are those of the authors and do not represent official policy of DEFRA, DFID or the UK Government.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sabrina G. S. A. Rothausen or Declan Conway.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 406 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rothausen, S., Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nature Clim Change 1, 210–219 (2011). https://doi.org/10.1038/nclimate1147

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing