Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking

Abstract

CD22 is a negative regulator of B-cell receptor signaling, an activity mediated by recruitment of SH2 domain–containing phosphatase 1 through a phosphorylated immunoreceptor tyrosine inhibitory motif in its cytoplasmic domain1. As in other members of the sialic acid–binding immunoglobulin-like lectin, or siglec, family, the extracellular N-terminal immunoglobulin domain of CD22 binds to glycan ligands containing sialic acid, which are highly expressed on B-cell glycoproteins2. B-cell glycoproteins bind to CD22 in cis and 'mask' the ligand-binding domain3, modulating its activity as a regulator of B-cell signaling4,5,6. To assess cell-surface cis ligand interactions, we developed a new method for in situ photoaffinity cross-linking of glycan ligands to CD22. Notably, CD45, surfaceIgM (sIgM) and other glycoproteins that bind to CD22 in vitro7,8 do not appear to be important cis ligands of CD22 in situ. Instead, CD22 seems to recognize glycans of neighboring CD22 molecules as cis ligands, forming homomultimeric complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction of a carbohydrate photoaffinity cross-linker into cell-surface glycoprotein ligands in situ.
Figure 2: Cross-linking of 9-AAz-NeuAc–containing glycans to CD22-Fc chimera in vitro, or endogenous B-cell membrane–bound CD22 in situ.
Figure 3: Differential recognition of B-cell glycoproteins by CD22 in vitro and in situ.
Figure 4: CD22 forms homomultimeric complexes with glycans on neighboring CD22 molecules.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Cyster, J.G. & Goodnow, C.C. Tuning antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment. Immunity 6, 509–517 (1997).

    Article  CAS  Google Scholar 

  2. Powell, L.D., Jain, R.K., Matta, K.L., Sabesan, S. & Varki, A. Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22. Evidence for a minimal structural recognition motif and the potential importance of multisite binding. J. Biol. Chem. 270, 7523–7532 (1995).

    Article  CAS  Google Scholar 

  3. Razi, N. & Varki, A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc. Natl. Acad. Sci. USA 95, 7469–7474 (1998).

    Article  CAS  Google Scholar 

  4. Jin, L., McLean, P.A., Neel, B.G. & Wortis, H.H. Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J. Exp. Med. 195, 1199–1205 (2002).

    Article  CAS  Google Scholar 

  5. Kelm, S., Gerlach, J., Brossmer, R., Danzer, C.P. & Nitschke, L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J. Exp. Med. 195, 1207–1213 (2002).

    Article  CAS  Google Scholar 

  6. Poe, J.C. et al. CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat. Immunol. 5, 1078–1087 (2004).

    Article  CAS  Google Scholar 

  7. Sgroi, D., Varki, A., Braesch-Andersen, S. & Stamenkovic, I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J. Biol. Chem. 268, 7011–7018 (1993).

    CAS  PubMed  Google Scholar 

  8. Hanasaki, K., Powell, L.D. & Varki, A. Binding of human plasma sialoglycoproteins by the B cell-specific lectin CD22. Selective recognition of immunoglobulin M and haptoglobin. J. Biol. Chem. 270, 7543–7550 (1995).

    Article  CAS  Google Scholar 

  9. Zhang, M. & Varki, A. Cell surface sialic acids do not affect primary CD22 interactions with CD45 and surface IgM nor the rate of constitutive CD22 endocytosis. Glycobiology 14, 939–949 (2004).

    Article  CAS  Google Scholar 

  10. Oetke, C. et al. Versatile biosynthetic engineering of sialic acid in living cells using synthetic sialic acid analogues. J. Biol. Chem. 277, 6688–6695 (2002).

    Article  CAS  Google Scholar 

  11. Luchansky, S.J., Goon, S. & Bertozzi, C.R. Expanding the diversity of unnatural cell-surface sialic acids. ChemBioChem 5, 371–374 (2004).

    Article  CAS  Google Scholar 

  12. Shapiro, R.E. et al. Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J. Biol. Chem. 272, 30380–30386 (1997).

    Article  CAS  Google Scholar 

  13. Zaccai, N.R. et al. Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure 11, 557–567 (2003).

    Article  CAS  Google Scholar 

  14. Keppler, O.T. et al. UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284, 1372–1376 (1999).

    Article  CAS  Google Scholar 

  15. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  Google Scholar 

  16. Law, C.L., Aruffo, A., Chandran, K.A., Doty, R.T. & Clark, E.A. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J. Immunol. 155, 3368–3376 (1995).

    CAS  PubMed  Google Scholar 

  17. Greer, S.F. & Justement, L.B. CD45 regulates tyrosine phosphorylation of CD22 and its association with the protein tyrosine phosphatase SHP-1. J. Immunol. 162, 5278–5286 (1999).

    CAS  PubMed  Google Scholar 

  18. Fujimoto, M., Bradney, A.P., Poe, J.C., Steeber, D.A. & Tedder, T.F. Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity 11, 191–200 (1999).

    Article  CAS  Google Scholar 

  19. Chen, J. et al. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat. Immunol. 5, 651–657 (2004).

    Article  CAS  Google Scholar 

  20. D'Arena, G. et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 83, 197–203 (1998).

    CAS  PubMed  Google Scholar 

  21. D'Arena, G. et al. Quantitative flow cytometry for the differential diagnosis of leukemic B-cell chronic lymphoproliferative disorders. Am. J. Hematol. 64, 275–281 (2000).

    Article  Google Scholar 

  22. Borowitz, M.J. et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor acute lymphoblastic leukemia. A Pediatric Oncology Group Study. Blood 89, 3960–3966 (1997).

    Article  CAS  Google Scholar 

  23. Sgroi, D., Nocks, A. & Stamenkovic, I. A single N-linked glycosylation site is implicated in the regulation of ligand recognition by the I-type lectins CD22 and CD33. J. Biol. Chem. 271, 18803–18809 (1996).

    Article  CAS  Google Scholar 

  24. Braesch-Andersen, S. & Stamenkovic, I. Sialylation of the B lymphocyte molecule CD22 by alpha 2,6-sialyltransferase is implicated in the regulation of CD22-mediated adhesion. J. Biol. Chem. 269, 11783–11786 (1994).

    CAS  PubMed  Google Scholar 

  25. Hennet, T., Chui, D., Paulson, J.C. & Marth, J.D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl. Acad. Sci. USA 95, 4504–4509 (1998).

    Article  CAS  Google Scholar 

  26. John, B. et al. The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J. Immunol. 170, 3534–3543 (2003).

    Article  CAS  Google Scholar 

  27. Xu, Z. & Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat. Immunol. 3, 764–771 (2002).

    Article  CAS  Google Scholar 

  28. Lanoue, A., Batista, F.D., Stewart, M. & Neuberger, M.S. Interaction of CD22 with α2,6-linked sialoglycoconjugates: innate recognition of self to dampen B cell autoreactivity? Eur. J. Immunol. 32, 348–355 (2002).

    Article  CAS  Google Scholar 

  29. Collins, B.E. et al. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl. Acad. Sci. USA 101, 6104–6109 (2004).

    Article  CAS  Google Scholar 

  30. Crocker, P.R. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12, 609–615 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Pawlita for the K20 cell line, A. Varki for the plasmid encoding for CD22-Fc plasmid, O. Blixt for the Galβ1-4GlcNAcβ-Lc-Lc-biotin, H. Li and M. Iufer for expert technical assistance, L.K. Allin for preparation of enzymes used in synthesis, and A. Tran-Crie for assistance in manuscript preparation. This work was funded by the US National Institutes of Health grants GM60938 and AI050143 and a Wenner-Gren Foundation fellowship to P.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C Paulson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Requirement of UV light for crosslinking of CD22 in situ. (PDF 592 kb)

Supplementary Fig. 2

Demonstration of equivalent biotinylation of cell preparations used for SNA and CD22-Fc immunoprecipitations in. (PDF 434 kb)

Supplementary Fig. 3

CD45, CD19, and PMCA can be immunoprecipitated by CD22-Fc in a sialic acid dependent manner. (PDF 561 kb)

Supplementary Fig. 4

Absence of CD22 crosslinking to CD19 or CD45. (PDF 419 kb)

Supplementary Fig. 5

Comparison of CD22 crosslinking in resting and activated K20 cells. (PDF 699 kb)

Supplementary Fig. 6

CD22 interacts in cis with glycans on neighboring CD22 molecules to form homo-multimeric complexes. (PDF 488 kb)

Supplementary Methods (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S., Collins, B., Bengtson, P. et al. Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat Chem Biol 1, 93–97 (2005). https://doi.org/10.1038/nchembio713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing