Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles

Abstract

Protein kinases are attractive therapeutic targets, but their high sequence and structural conservation complicates the development of specific inhibitors. We recently identified, in a DNA-templated macrocycle library, inhibitors with unusually high selectivity among Src-family kinases. Starting from these compounds, we developed and characterized in molecular detail potent macrocyclic inhibitors of Src kinase and its cancer-associated 'gatekeeper' mutant. We solved two cocrystal structures of macrocycles bound to Src kinase. These structures reveal the molecular basis of the combined ATP- and substrate peptide–competitive inhibitory mechanism and the remarkable kinase specificity of the compounds. The most potent compounds inhibit Src activity in cultured mammalian cells. Our work establishes that macrocycles can inhibit protein kinases through a bisubstrate-competitive mechanism with high potency and exceptional specificity, reveals the precise molecular basis for their desirable properties and provides new insights into the development of Src-specific inhibitors with potential therapeutic relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of macrocycles described in this work.
Figure 2: Potency of macrocycle compounds against Src kinase domain constructs.
Figure 3: Macrocycle compounds are ATP- and peptide-competitive inhibitors.
Figure 4: The three-dimensional structure of Src kinase domain bound to macrocyclic inhibitors.
Figure 5: Determinants of macrocycle specificity.
Figure 6: Activity of the macrocycles against the T338I gatekeeper mutant of Src kinase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cohen, P. Protein kinases—the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002).

    Article  CAS  Google Scholar 

  2. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  Google Scholar 

  3. Cools, J. et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRα-induced myeloproliferative disease. Cancer Cell 3, 459–469 (2003).

    Article  CAS  Google Scholar 

  4. Bikker, J.A., Brooijmans, N., Wissner, A. & Mansour, T.S. Kinase domain mutations in cancer: implications for small molecule drug design strategies. J. Med. Chem. 52, 1493–1509 (2009).

    Article  CAS  Google Scholar 

  5. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  Google Scholar 

  6. Zhang, J., Yang, P.L. & Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009).

    Article  Google Scholar 

  7. Adrián, F.J. et al. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat. Chem. Biol. 2, 95–102 (2006).

    Article  Google Scholar 

  8. Ohren, J.F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11, 1192–1197 (2004).

    Article  CAS  Google Scholar 

  9. Shan, Y. et al. How does a drug molecule find its target binding site? J. Am. Chem. Soc. 133, 9181–9183 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  10. Levitzki, A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol. Ther. 82, 231–239 (1999).

    Article  CAS  Google Scholar 

  11. Gazit, A., Yaish, P., Gilon, C. & Levitzki, A. Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J. Med. Chem. 32, 2344–2352 (1989).

    Article  CAS  Google Scholar 

  12. Krishnamurty, R. & Maly, D.J. Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors. ACS Chem. Biol. 5, 121–138 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  13. Soverini, S. et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA working party on Chronic Myeloid Leukemia. Clin. Cancer Res. 12, 7374–7379 (2006).

    Article  CAS  Google Scholar 

  14. Azam, M., Seeliger, M.A., Gray, N.S., Kuriyan, J. & Daley, G.Q. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol. 15, 1109–1118 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  15. Gartner, Z.J. & Liu, D.R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  16. Gartner, Z.J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  17. Li, X. & Liu, D.R. DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Edn Engl. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  18. Doyon, J.B., Snyder, T.M. & Liu, D.R. Highly sensitive in vitro selections for DNA-linked synthetic small molecules with protein binding affinity and specificity. J. Am. Chem. Soc. 125, 12372–12373 (2003).

    Article  CAS  Google Scholar 

  19. Kleiner, R.E., Dumelin, C.E. & Liu, D.R. Small-molecule discovery from DNA-encoded chemical libraries. Chem. Soc. Rev. 40, 5707–5717 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  20. Tse, B.N., Snyder, T.M., Shen, Y. & Liu, D.R. Translation of DNA into a library of 13,000 synthetic small-molecule macrocycles suitable for in vitro selection. J. Am. Chem. Soc. 130, 15611–15626 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  21. Kleiner, R.E., Dumelin, C.E., Tiu, G.C., Sakurai, K. & Liu, D.R. In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J. Am. Chem. Soc. 132, 11779–11791 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  22. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  Google Scholar 

  23. Biron, E., Chatterjee, J. & Kessler, H. Optimized selective N-methylation of peptides on solid support. J. Pept. Sci. 12, 213–219 (2006).

    Article  CAS  Google Scholar 

  24. Abbott, L. et al. Discovery of thienopyridines as Src-family selective Lck inhibitors. Bioorg. Med. Chem. Lett. 17, 1167–1171 (2007).

    Article  CAS  Google Scholar 

  25. Burchat, A.F. et al. Pyrazolo[3,4-d]pyrimidines containing an extended 3-substituent as potent inhibitors of Lck—a selectivity insight. Bioorg. Med. Chem. Lett. 12, 1687–1690 (2002).

    Article  CAS  Google Scholar 

  26. Maly, D.J., Choong, I.C. & Ellman, J.A. Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc. Natl. Acad. Sci. USA 97, 2419–2424 (2000).

    Article  CAS  Google Scholar 

  27. Bamborough, P., Drewry, D., Harper, G., Smith, G.K. & Schneider, K. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J. Med. Chem. 51, 7898–7914 (2008).

    Article  CAS  Google Scholar 

  28. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  Google Scholar 

  29. Levinson, N.M. et al. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 4, e144 (2006).

    Article  PubMed Central  Google Scholar 

  30. Hubbard, S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  31. Barouch-Bentov, R. et al. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Mol. Cell 33, 43–52 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  32. Laszlo, G.S. & Cooper, J.A. Restriction of Src activity by Cullin-5. Curr. Biol. 19, 157–162 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  33. Xu, W., Harrison, S.C. & Eck, M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  CAS  Google Scholar 

  34. Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    Article  CAS  Google Scholar 

  35. Seeliger, M.A. et al. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci. 14, 3135–3139 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  36. Seeliger, M.A. et al. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure 15, 299–311 (2007).

    Article  CAS  Google Scholar 

  37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  38. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  39. Cowan-Jacob, S.W. et al. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 13, 861–871 (2005).

    Article  CAS  Google Scholar 

  40. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  41. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  42. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography No. 26 (1992).

  43. Xu, W., Doshi, A., Lei, M., Eck, M.J. & Harrison, S.C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    Article  CAS  Google Scholar 

  44. Barker, S.C. et al. Characterization of pp60c-src tyrosine kinase activities using a continuous assay: autoactivation of the enzyme is an intermolecular autophosphorylation process. Biochemistry 34, 14843–14851 (1995).

    Article  CAS  Google Scholar 

  45. Songyang, Z. & Cantley, L.C. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem. Sci. 20, 470–475 (1995).

    Article  CAS  Google Scholar 

  46. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373, 536–539 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

3T3 (Src−/−) cells transfected with a plasmid encoding c-SrcY529F or null vector were a gift from J. Cooper (Fred Hutchinson Cancer Research Center). We thank the beamline staff at X29A at the National Synchrotron Light Source at Brookhaven National Laboratory, the use of which was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences contract DE-AC02-98CH10886. G.G. and M.A.S. thank L. Malone for her assistance. This research was supported by the Howard Hughes Medical Institute (D.R.L.) and US National Institutes of Health (NIH)–National Institute of General Medical Sciences grants GM065865 (D.R.L.) and GM080097 (M.A.S.). R.E.K. acknowledges NIH training grant support to the Harvard University Training Program in Molecular, Cellular and Chemical Biology. G.G. acknowledges NIH training grant support to the Graduate Program in Molecular and Cellular Pharmacology at Stony Brook University.

Author information

Authors and Affiliations

Authors

Contributions

D.R.L. and R.E.K. developed and synthesized the compounds, performed Z'-LYTE assays and tested activity in NIH 3T3 cells. G.G., M.P.-G. and M.A.S. prepared proteins and performed the structural studies and biochemical assays. All authors analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to David R Liu or Markus A Seeliger.

Ethics declarations

Competing interests

D.R.L. is a consultant for Ensemble Therapeutics, a company that uses DNA-templated synthesis in drug discovery and development.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 5537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georghiou, G., Kleiner, R., Pulkoski-Gross, M. et al. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Nat Chem Biol 8, 366–374 (2012). https://doi.org/10.1038/nchembio.792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.792

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research