Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4


Cytokinins are classic hormones that orchestrate plant growth and development and the integrity of stem cell populations. Cytokinin receptors are eukaryotic sensor histidine kinases that are activated by both naturally occurring adenine-type cytokinins and urea-based synthetic compounds. Crystal structures of the Arabidopsis thaliana histidine kinase 4 sensor domain in complex with different cytokinin ligands now rationalize the hormone-binding specificity of the receptor and may spur the design of new cytokinin ligands.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: AHK4 binds cytokinins with its membrane-distal PAS domain.
Figure 2: Structural plasticity in the AHK4 PAS domain allows for the binding of diverse cytokinins.
Figure 3: Urea-based synthetic cytokinins mimic adenine-type hormone-receptor interactions.

Accession codes


Protein Data Bank


  1. 1

    Jaillais, Y. & Chory, J. Nat. Struct. Mol. Biol. 17, 642–645 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Werner, T. & Schmülling, T. Curr. Opin. Plant Biol. 12, 527–538 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Kakimoto, T. Annu. Rev. Plant Biol. 54, 605–627 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Inoue, T. et al. Nature 409, 1060–1063 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Mähönen, A.P. et al. Genes Dev. 14, 2938–2943 (2000).

    Article  Google Scholar 

  6. 6

    Suzuki, T. et al. Plant Cell Physiol. 42, 107–113 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Ueguchi, C., Sato, S., Kato, T. & Tabata, S. Plant Cell Physiol. 42, 751–755 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Yamada, H. et al. Plant Cell Physiol. 42, 1017–1023 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Riefler, M., Novak, O., Strnad, M. & Schmülling, T. Plant Cell 18, 40–54 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Higuchi, M. et al. Proc. Natl. Acad. Sci. USA 101, 8821–8826 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Heyl, A. et al. BMC Evol. Biol. 7, 62 (2007).

    Article  Google Scholar 

  12. 12

    Amasino, R. Plant Physiol. 138, 1177–1184 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Romanov, G.A., Lomin, S.N. & Schmülling, T. J. Exp. Bot. 57, 4051–4058 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Bajguz, A. & Piotrowska, A. Phytochemistry 70, 957–969 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Ponting, C.P. & Aravind, L. Curr. Biol. 7, R674–R677 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Zhang, Z. & Hendrickson, W.A. J. Mol. Biol. 400, 335–353 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Gao, R. & Stock, A.M. Annu. Rev. Microbiol. 63, 133–154 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Pas, J., von Grotthuss, M., Wyrwicz, L.S., Rychlewski, L. & Barciszewski, J. FEBS Lett. 576, 287–290 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Caillet, J. & Droogmans, L. J. Bacteriol. 170, 4147–4152 (1988).

    CAS  Article  Google Scholar 

  20. 20

    Gray, J., Gelvin, S.B., Meilan, R. & Morris, R.O. Plant Physiol. 110, 431–438 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Pasternak, O. et al. Plant Cell 18, 2622–2634 (2006).

    Article  Google Scholar 

  22. 22

    Mizuno, T. & Yamashino, T. Methods Enzymol. 471, 335–356 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Miller, C.O., Skoog, F., Okumura, F.S., Von Saltza, M.H. & Strong, F.M. J. Am. Coll. Surg. 78, 1375–1380 (1956).

    CAS  Google Scholar 

  24. 24

    Zhou, Y.-F. et al. J. Mol. Biol. 383, 49–61 (2008).

    CAS  Article  Google Scholar 

Download references


We thank T. Mizuno for providing plasmid pCold IV–AHK4 and strain KMI001, M. Jinek and Y. Jaillais for comments on the manuscript and W. Kwiatkowski and staff at beamlines BL 8.2.1 and 8.2.2 of the Advanced Light Source in Berkeley, California, for technical support. This work was supported by long-term fellowships from the European Molecular Biology Organization, the International Human Frontier Science Program Organization and the Marc and Eva Stern foundation (M.H.) and by grants from the US National Institutes of Health (NIH) (5R01GM52413), the US National Science Foundation (IOS-0649389) and the Howard Hughes Medical Institute (J.C.). Maintenance of the Salk X-ray equipment is supported by NIH grant P30 NS057096.

Author information




M.H. designed the project; M.H. and T.D. expressed and purified proteins and carried out functional assays; M.H. crystallized, phased and refined the structures; M.H. analyzed the data; J.C. supervised the project; and M.H. wrote the paper.

Corresponding author

Correspondence to Joanne Chory.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 5589 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hothorn, M., Dabi, T. & Chory, J. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7, 766–768 (2011).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing