Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A fully automated flow-based approach for accelerated peptide synthesis

Abstract

Here we report a fully automated, flow-based approach to solid-phase polypeptide synthesis, with amide bond formation in 7 seconds and total synthesis times of 40 seconds per amino acid residue. Crude peptide purities and isolated yields were comparable to those for standard-batch solid-phase peptide synthesis. At full capacity, this approach can yield tens of thousands of individual 30-mer peptides per year.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Automated flow peptide synthesis enables 7-s amide bond formation and complete solid-phase peptide synthesis cycles in 40 s.
Figure 2: Rapid synthesis of long polypeptides.
Figure 3: Rapid optimization of polypeptide synthesis by in-line monitoring of Fmoc removal.

References

  1. 1

    Albericio, F. & Kruger, H.G. Future Med. Chem. 4, 1527–1531 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Coin, I., Beyermann, M. & Bienert, M. Nat. Protoc. 2, 3247–3256 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Carter, C.F. et al. Org. Process Res. Dev. 14, 393–404 (2010).

    CAS  Article  Google Scholar 

  4. 4

    McQuade, D.T. & Seeberger, P.H. J. Org. Chem. 78, 6384–6389 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Razzaq, T., Glasnov, T.N. & Kappe, C.O. European J. Org. Chem. 2009, 1321–1325 (2009).

    Article  Google Scholar 

  6. 6

    Yoshida, J., Takahashi, Y. & Nagaki, A. Chem. Commun. (Camb.) 49, 9896–9904 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Adamo, A. et al. Science 352, 61–67 (2016).

    CAS  Article  Google Scholar 

  8. 8

    Dryland, A. & Sheppard, R.C. Tetrahedron 44, 859–876 (1988).

    CAS  Article  Google Scholar 

  9. 9

    Bayer, E. & Rapp, W. in Poly(Ethylene Glycol) Chemistry 325–345 (ed. Harris, J.M.), (Springer, 1992).

  10. 10

    Simon, M.D. et al. ChemBioChem 15, 713–720 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Mong, S.K., Vinogradov, A.A., Simon, M.D. & Pentelute, B.L. ChemBioChem 15, 721–733 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Yu, H.M., Chen, S.T. & Wang, K.T. J. Org. Chem. 57, 4781–4784 (1992).

    CAS  Article  Google Scholar 

  13. 13

    Han, Y., Albericio, F. & Barany, G. J. Org. Chem. 62, 4307–4312 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Chan, W.C. & White, P.D. (eds.) Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Oxford University Press, 2000).

  15. 15

    Collins, J.M., Porter, K.A., Singh, S.K. & Vanier, G.S. Org. Lett. 16, 940–943 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Johnson, T., Quibell, M., Owen, D. & Sheppard, R.C. J. Chem. Soc. Chem. Commun. 369–372 (1993).

  17. 17

    Wöhr, T. & Mutter, M. Tetrahedr. Lett. 36, 3847–3848 (1995).

    Article  Google Scholar 

  18. 18

    Kent, S.B.H. Annu. Rev. Biochem. 57, 957–989 (1988).

    CAS  Article  Google Scholar 

  19. 19

    Schnölzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S.B. Int. J. Pept. Protein Res. 40, 180–193 (1992).

    Article  Google Scholar 

  20. 20

    Sarin, V.K., Kent, S.B.H., Tam, J.P. & Merrifield, R.B. Anal. Biochem. 117, 147–157 (1981).

    CAS  Article  Google Scholar 

  21. 21

    Kaiser, E., Colescott, R.L., Bossinger, C.D. & Cook, P.I. Anal. Biochem. 34, 595–598 (1970).

    CAS  Article  Google Scholar 

  22. 22

    Carpino, L.A. et al. Tetrahedr. Lett. 45, 7519–7523 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Hjørringgaard, C.U., Brust, A. & Alewood, P.F. J. Pept. Sci. 18, 199–207 (2012).

    Article  Google Scholar 

  24. 24

    Gross, E. & Meienhofer, J. (eds.) Peptides: Special Methods in Peptide Synthesis vol. 2: Analysis, Synthesis, Biology (Academic Press Inc., 1980).

  25. 25

    Varanda, L.M. & Miranda, M.T.M. J. Pept. Res. 50, 102–108 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Jiang, F., Drese, K.S., Hardt, S., Küpper, M. & Schönfeld, F. AIChE J. 50, 2297–2305 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Gude, M., Ryf, J. & White, P.D. Lett. Pept. Sci. 9, 203–206 (2002).

    CAS  Google Scholar 

  28. 28

    Dang, B., Dhayalan, B. & Kent, S.B.H. Org. Lett. 17, 3521–3523 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by startup funds from the MIT Department of Chemistry for B.L.P., the MIT Deshpande Center for Technological Innovation, and Dr. Reddy's Laboratories Limited and a National Science Foundation Graduate Student Fellowship for A.M. We also thank A. Teixeria, E. Evans, G. Lautrette, J. Wolfe, S. Jain, S. Kim, and A.J. West for expert technical assistance, suggestions, and as early adopters of the technology.

Author information

Affiliations

Authors

Contributions

D.A.T. and A.J.M. designed, coded, and assembled the AFPS and designed experiments to characterize it. R.B., A.J.M., and D.A.T. designed and implemented the LabView graphical interface and revised control electronics. M.D.S., A.J.M., D.A.T., and A.A. designed the valving and earlier prototype versions of the AFPS. A.J.M., D.A.T., M.D.S., K.F.J., and B.L.P. wrote the manuscript. K.F.J. and B.L.P. supervised the work.

Corresponding author

Correspondence to Bradley L Pentelute.

Ethics declarations

Competing interests

Multiple patent applications covering this work have been filed by the MIT Technology Licensing Office. B.L.P. plans to commercialize this technology via a startup and will hold equity in the company.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–19 (PDF 3203 kb)

The movie shows a broad overview of the different components of the AFPS followed by its use in a typical synthesis.

First, the user inputs a peptide sequence with all of the synthesis parameters. After pressing "run", the machine swells a syringe filled with resin with DMF and loads it into the heated reactor. During synthesis, the display shows UV, pressure, and temperature data. When the peptide synthesis is complete, the machine ejects the reactor. (MOV 19595 kb)

Supplementary Software

Serial drivers for the pumps and valves written for the hardware described in Supplementary Figure 14. (ZIP 7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mijalis, A., Thomas, D., Simon, M. et al. A fully automated flow-based approach for accelerated peptide synthesis. Nat Chem Biol 13, 464–466 (2017). https://doi.org/10.1038/nchembio.2318

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing