Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Automated stereocontrolled assembly-line synthesis of organic molecules

Abstract

Automation has fuelled dramatic advances in fields such as proteomics and genomics by enabling non-experts to prepare, test and analyse complex biological molecules, including proteins and nucleic acids. However, the field of automated organic synthesis lags far behind, partly because of the complexity and variety of organic molecules. As a result, only a handful of relatively simple organic molecules, requiring a small number of synthetic steps, have been made in an automated fashion. Here we report an automated assembly-line synthesis that allows iterative formation of C(sp3)–C(sp3) bonds with high stereochemical control and reproducibility, enabling access to complex organic molecules. This was achieved on a commercially available robotic platform capable of handling air-sensitive reactants and performing low-temperature reactions, which enabled six sequenced one-carbon homologations of organoboron substrates to be performed iteratively without human intervention. Together with other automated functional group manipulations, this methodology has been exploited to rapidly build the core fragment of the natural product (+)-kalkitoxin, thus expanding the field of automated organic synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Automated synthesis development.
Fig. 2: Automated homologation reactions.
Fig. 3: Assembly-line synthesis.

Similar content being viewed by others

Data availability

All experimental procedures and data are available in the main text and Supplementary Information.

References

  1. Merrifield, R. B. Automated synthesis of peptides: solid-phase peptide synthesis, a simple and rapid synthetic method, has now been automated. Science 150, 178–185 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Caruthers, M. H. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Plante, O. J., Palmacci, E. R. & Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Joseph, A. A., Pardo-Vargas, A. & Seeberger, P. H. Total synthesis of polysaccharides by automated glycan assembly. J. Am. Chem. Soc. 142, 8561–8564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, C. et al. Automated synthesis of prexasertib and derivatives enabled by continuous-flow solid-phase synthesis. Nat. Chem. 13, 451–457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mehr, S. H. M., Craven, M., Leonov, A., Keenan, G. & Cronin, L. A universal system for digitization and automatic execution of the chemical synthesis literature. Science 370, 101–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Tu, N. P., Searle, P. A. & Sarris, K. An automated microwave-assisted synthesis purification system for rapid generation of compound libraries. J. Lab. Autom. 21, 459–469 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Li, T. et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nat. Chem. 11, 229–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chatterjee, S., Guidi, M., Seeberger, P. H. & Gilmore, K. Automated radial synthesis of organic molecules. Nature 579, 379–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blair, D. J. et al. Automated iterative Csp3-C bond formation. Nature 604, 92–97 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Aiken, S. G, Bateman, J. M & Aggarwal, V. K. in Advances in Organoboron Chemistry towards Organic Synthesis, Ch. 13 (Thieme, 2019).

  16. Casoni, G. et al. α‑Sulfinyl benzoates as precursors to Li and Mg carbenoids for the stereoselective iterative homologation of boronic esters. J. Am. Chem. Soc. 139, 11877–11886 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Yeung, K., Mykura, R. C. & Aggarwal, V. K. Lithiation–borylation methodology in the total synthesis of natural products. Nat. Synth. 1, 117–126 (2022).

    Article  Google Scholar 

  18. Fiorito, D. et al. Stereocontrolled total synthesis of bastimolide B using iterative homologation of boronic esters. J. Am. Chem. Soc. 144, 7995–8001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leonori, D. & Aggarwal, V. K. Lithiation–borylation methodology and its application in synthesis. Acc. Chem. Res. 47, 3174–3183 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Matteson, D. S. α-Halo boronic esters: intermediates for stereodirected synthesis. Chem. Rev. 89, 1535–1551 (1989).

    Article  CAS  Google Scholar 

  21. Matteson, D. S., Collins, B. S. L., Aggarwal, V. K. & Ciganek, E. The Matteson reaction. Organic Reactions https://doi.org/10.1002/0471264180.or105.03 (2021).

  22. Matteson, D. S. & Ray, R. Directed chiral synthesis with pinanediol boronic esters. J. Am. Chem. Soc. 102, 7590–7591 (1980).

    Article  CAS  Google Scholar 

  23. Matteson, D. S., Ray, R., Rocks, R. R. & Tsai, D. J. S. Directed chiral synthesis by way of α-chloro boronic esters. Organometallics 2, 1536–1543 (1983).

    Article  CAS  Google Scholar 

  24. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–1188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leonori, D. & Aggarwal, V. K. in Synthesis and Application of Organoboron Compounds, Vol. 49, 271–295 (Springer, 2015).

  26. Balieu, S. et al. Toward ideality: the synthesis of (+)-kalkitoxin and (+)-hydroxyphthioceranic acid by assembly-line synthesis. J. Am. Chem. Soc. 137, 4398–4403 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Mlynarski, S. N., Karns, A. S. & Morken, J. P. Direct stereospecific amination of alkyl and aryl pinacol boronates. J. Am. Chem. Soc. 134, 16449–16451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edelstein, E. K., Grote, A. C., Palkowitz, M. D. & Morken, J. P. A protocol for direct stereospecific amination of primary, secondary, and tertiary alkylboronic esters. Synlett 29, 1749–1752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.F. thanks the University of Bristol for awarding the Engineering and Physical Sciences Research Council (EPSRC) Doctoral Prize Fellowship. R.C.M., J.M.F. and J.J.R. thank the Bristol Chemical Synthesis Centre for doctoral training. We thank the EPSRC for funding (EP/R513179/1, V.F.; EP/L015366/1, R.C.M.; EP/G036764/1, J.M.F. and J.J.R.; EP/T033584/1, V.K.A.; EP/R008795/1, B.B). We thank Chemspeed for technical support.

Author information

Authors and Affiliations

Authors

Contributions

V.K.A. conceived the project and directed the research. V.F., R.C.M., J.M.F., A.N. and V.K.A. prepared the manuscript. V.F., R.C.M., J.M.F., J.J.R. and B.B. performed the experimental work. All authors analysed the results.

Corresponding author

Correspondence to Varinder K. Aggarwal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Richard Bourne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasano, V., Mykura, R.C., Fordham, J.M. et al. Automated stereocontrolled assembly-line synthesis of organic molecules. Nat. Synth 1, 902–907 (2022). https://doi.org/10.1038/s44160-022-00158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00158-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing