A fully automated flow-based approach for accelerated peptide synthesis

Article metrics


Here we report a fully automated, flow-based approach to solid-phase polypeptide synthesis, with amide bond formation in 7 seconds and total synthesis times of 40 seconds per amino acid residue. Crude peptide purities and isolated yields were comparable to those for standard-batch solid-phase peptide synthesis. At full capacity, this approach can yield tens of thousands of individual 30-mer peptides per year.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Automated flow peptide synthesis enables 7-s amide bond formation and complete solid-phase peptide synthesis cycles in 40 s.
Figure 2: Rapid synthesis of long polypeptides.
Figure 3: Rapid optimization of polypeptide synthesis by in-line monitoring of Fmoc removal.


  1. 1

    Albericio, F. & Kruger, H.G. Future Med. Chem. 4, 1527–1531 (2012).

  2. 2

    Coin, I., Beyermann, M. & Bienert, M. Nat. Protoc. 2, 3247–3256 (2007).

  3. 3

    Carter, C.F. et al. Org. Process Res. Dev. 14, 393–404 (2010).

  4. 4

    McQuade, D.T. & Seeberger, P.H. J. Org. Chem. 78, 6384–6389 (2013).

  5. 5

    Razzaq, T., Glasnov, T.N. & Kappe, C.O. European J. Org. Chem. 2009, 1321–1325 (2009).

  6. 6

    Yoshida, J., Takahashi, Y. & Nagaki, A. Chem. Commun. (Camb.) 49, 9896–9904 (2013).

  7. 7

    Adamo, A. et al. Science 352, 61–67 (2016).

  8. 8

    Dryland, A. & Sheppard, R.C. Tetrahedron 44, 859–876 (1988).

  9. 9

    Bayer, E. & Rapp, W. in Poly(Ethylene Glycol) Chemistry 325–345 (ed. Harris, J.M.), (Springer, 1992).

  10. 10

    Simon, M.D. et al. ChemBioChem 15, 713–720 (2014).

  11. 11

    Mong, S.K., Vinogradov, A.A., Simon, M.D. & Pentelute, B.L. ChemBioChem 15, 721–733 (2014).

  12. 12

    Yu, H.M., Chen, S.T. & Wang, K.T. J. Org. Chem. 57, 4781–4784 (1992).

  13. 13

    Han, Y., Albericio, F. & Barany, G. J. Org. Chem. 62, 4307–4312 (1997).

  14. 14

    Chan, W.C. & White, P.D. (eds.) Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Oxford University Press, 2000).

  15. 15

    Collins, J.M., Porter, K.A., Singh, S.K. & Vanier, G.S. Org. Lett. 16, 940–943 (2014).

  16. 16

    Johnson, T., Quibell, M., Owen, D. & Sheppard, R.C. J. Chem. Soc. Chem. Commun. 369–372 (1993).

  17. 17

    Wöhr, T. & Mutter, M. Tetrahedr. Lett. 36, 3847–3848 (1995).

  18. 18

    Kent, S.B.H. Annu. Rev. Biochem. 57, 957–989 (1988).

  19. 19

    Schnölzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S.B. Int. J. Pept. Protein Res. 40, 180–193 (1992).

  20. 20

    Sarin, V.K., Kent, S.B.H., Tam, J.P. & Merrifield, R.B. Anal. Biochem. 117, 147–157 (1981).

  21. 21

    Kaiser, E., Colescott, R.L., Bossinger, C.D. & Cook, P.I. Anal. Biochem. 34, 595–598 (1970).

  22. 22

    Carpino, L.A. et al. Tetrahedr. Lett. 45, 7519–7523 (2004).

  23. 23

    Hjørringgaard, C.U., Brust, A. & Alewood, P.F. J. Pept. Sci. 18, 199–207 (2012).

  24. 24

    Gross, E. & Meienhofer, J. (eds.) Peptides: Special Methods in Peptide Synthesis vol. 2: Analysis, Synthesis, Biology (Academic Press Inc., 1980).

  25. 25

    Varanda, L.M. & Miranda, M.T.M. J. Pept. Res. 50, 102–108 (1997).

  26. 26

    Jiang, F., Drese, K.S., Hardt, S., Küpper, M. & Schönfeld, F. AIChE J. 50, 2297–2305 (2004).

  27. 27

    Gude, M., Ryf, J. & White, P.D. Lett. Pept. Sci. 9, 203–206 (2002).

  28. 28

    Dang, B., Dhayalan, B. & Kent, S.B.H. Org. Lett. 17, 3521–3523 (2015).

Download references


This research was supported by startup funds from the MIT Department of Chemistry for B.L.P., the MIT Deshpande Center for Technological Innovation, and Dr. Reddy's Laboratories Limited and a National Science Foundation Graduate Student Fellowship for A.M. We also thank A. Teixeria, E. Evans, G. Lautrette, J. Wolfe, S. Jain, S. Kim, and A.J. West for expert technical assistance, suggestions, and as early adopters of the technology.

Author information

D.A.T. and A.J.M. designed, coded, and assembled the AFPS and designed experiments to characterize it. R.B., A.J.M., and D.A.T. designed and implemented the LabView graphical interface and revised control electronics. M.D.S., A.J.M., D.A.T., and A.A. designed the valving and earlier prototype versions of the AFPS. A.J.M., D.A.T., M.D.S., K.F.J., and B.L.P. wrote the manuscript. K.F.J. and B.L.P. supervised the work.

Correspondence to Bradley L Pentelute.

Ethics declarations

Competing interests

Multiple patent applications covering this work have been filed by the MIT Technology Licensing Office. B.L.P. plans to commercialize this technology via a startup and will hold equity in the company.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–19 (PDF 3203 kb)

The movie shows a broad overview of the different components of the AFPS followed by its use in a typical synthesis.

First, the user inputs a peptide sequence with all of the synthesis parameters. After pressing "run", the machine swells a syringe filled with resin with DMF and loads it into the heated reactor. During synthesis, the display shows UV, pressure, and temperature data. When the peptide synthesis is complete, the machine ejects the reactor. (MOV 19595 kb)

Supplementary Software

Serial drivers for the pumps and valves written for the hardware described in Supplementary Figure 14. (ZIP 7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mijalis, A., Thomas, D., Simon, M. et al. A fully automated flow-based approach for accelerated peptide synthesis. Nat Chem Biol 13, 464–466 (2017) doi:10.1038/nchembio.2318

Download citation

Further reading