Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

How the glycosyltransferase OGT catalyzes amide bond cleavage

Abstract

The essential human enzyme O-linked β-N-acetylglucosamine transferase (OGT), known for modulating the functions of nuclear and cytoplasmic proteins through serine and threonine glycosylation, was unexpectedly implicated in the proteolytic maturation of the cell cycle regulator host cell factor-1 (HCF-1). Here we show that HCF-1 cleavage occurs via glycosylation of a glutamate side chain followed by on-enzyme formation of an internal pyroglutamate, which undergoes spontaneous backbone hydrolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two intermediates form during OGT-mediated cleavage of an HCF-1 repeat.
Figure 2: The mechanism of HCF-1 cleavage proceeds via glycosylation on glutamate followed by decomposition to an internal pyroglutamate, which undergoes backbone hydrolysis.

Similar content being viewed by others

References

  1. Parker, J.B., Yin, H., Vinckevicius, A. & Chakravarti, D. Cell Rep. 9, 967–982 (2014).

    Article  CAS  Google Scholar 

  2. Tyagi, S., Chabes, A.L., Wysocka, J. & Herr, W. Mol. Cell 27, 107–119 (2007).

    Article  CAS  Google Scholar 

  3. Capotosti, F. et al. Cell 144, 376–388 (2011).

    Article  CAS  Google Scholar 

  4. Wilson, A.C., Peterson, M.G. & Herr, W. Genes Dev. 9, 2445–2458 (1995).

    Article  CAS  Google Scholar 

  5. Wilson, A.C., LaMarco, K., Peterson, M.G. & Herr, W. Cell 74, 115–125 (1993).

    Article  CAS  Google Scholar 

  6. Julien, E. & Herr, W. EMBO J. 22, 2360–2369 (2003).

    Article  CAS  Google Scholar 

  7. Mangone, M., Myers, M.P. & Herr, W. PLoS One 5, e9020 (2010).

    Article  Google Scholar 

  8. Daou, S. et al. Proc. Natl. Acad. Sci. USA 108, 2747–2752 (2011).

    Article  CAS  Google Scholar 

  9. Janetzko, J. & Walker, S. J. Biol. Chem. 289, 34424–34432 (2014).

    Article  Google Scholar 

  10. Bond, M.R. & Hanover, J.A. J. Cell Biol. 208, 869–880 (2015).

    Article  CAS  Google Scholar 

  11. Hardivillé, S. & Hart, G.W. Cell Metab. 20, 208–213 (2014).

    Article  Google Scholar 

  12. Lazarus, M.B. et al. Science 342, 1235–1239 (2013).

    Article  CAS  Google Scholar 

  13. Verdin, E. Science 350, 1208–1213 (2015).

    Article  CAS  Google Scholar 

  14. Feldman, J.L., Dittenhafer-Reed, K.E. & Denu, J.M. J. Biol. Chem. 287, 42419–42427 (2012).

    Article  CAS  Google Scholar 

  15. Bhuiyan, T., Waridel, P., Kapuria, V., Zoete, V. & Herr, W. PLoS One 10, e0136636 (2015).

    Article  Google Scholar 

  16. Schimpl, M. et al. Nat. Chem. Biol. 8, 969–974 (2012).

    Article  CAS  Google Scholar 

  17. Lazarus, M.B. et al. Nat. Chem. Biol. 8, 966–968 (2012).

    Article  CAS  Google Scholar 

  18. Erickson, B.W. & Khan, S.A. Ann. NY Acad. Sci. 421, 167–177 (1983).

    Article  CAS  Google Scholar 

  19. Khan, S.A. & Erickson, B.W. J. Biol. Chem. 257, 11864–11867 (1982).

    CAS  PubMed  Google Scholar 

  20. Khan, S.A., Sekulski, J.M. & Erickson, B.W. Biochemistry 25, 5165–5171 (1986).

    Article  CAS  Google Scholar 

  21. Meyer, V. Double peaks from stable conformers. in Pitfalls and Errors of HPLC in Pictures Section 2.34, 110–111 (Wiley, Weinheim, 2013).

  22. Hassa, P.O., Haenni, S.S., Elser, M. & Hottiger, M.O. Microbiol. Mol. Biol. Rev. 70, 789–829 (2006).

    Article  CAS  Google Scholar 

  23. Tao, Z., Gao, P. & Liu, H.W. J. Am. Chem. Soc. 131, 14258–14260 (2009).

    Article  CAS  Google Scholar 

  24. Nalbone, J.M., Lahankar, N., Buissereth, L. & Raj, M. Org. Lett. 18, 1186–1189 (2016).

    Article  CAS  Google Scholar 

  25. Kötzler, M.P. & Withers, S.G. J. Biol. Chem. 291, 429–434 (2016).

    Article  Google Scholar 

  26. Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Nature 469, 564–567 (2011).

    Article  CAS  Google Scholar 

  27. Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G.W. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project, Number 4. Acta Crystallogr. D Biol. Crystallogr. D50, 760–763 (1994).

  29. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  30. Painter, J. & Merritt, E.A. J. Appl. Cryst. 39, 109–111 (2006).

    Article  CAS  Google Scholar 

  31. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  32. The PyMOL Molecular Graphics System, Version 1.8. (Schrodinger, LLC., 2015).

  33. McNicholas, S., Potterton, E., Wilson, K.S. & Noble, M.E.M. Acta Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

    Article  CAS  Google Scholar 

  34. Morin, A. et al. eLife 2, e01456 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

J.J. is a National Science and Engineering Research Council (NSERC) of Canada PGS-M and PGS-D3 fellowship recipient. Funding for this work was provided by a National Institutes of Health grant (R01 GM094263) to S.W. We thank C. Thompson (Bruker Daltonics, Billerica, Massachusetts, USA) for access to and assistance with a SolariX XR 7T q-Q-FT-ICR mass spectrometer. We thank D. Vocadlo (Simon Fraser University, Vancouver, British Columbia, Canada) for providing UDP-5SGlcNAc. X-ray diffraction data were collected at the National Synchrotron Light Source at Brookhaven National Laboratory (Beamline X25).

Author information

Authors and Affiliations

Authors

Contributions

J.J. and S.W. designed research and analyzed data; J.J. performed LC-MS/MS experiments with assistance from S.A.T.; M.B.L. performed X-ray crystallography experiments and solved the structure of hOGT4.5 (D554N); J.J. performed all other experiments reported in the paper; J.J. and S.W. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Suzanne Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–22 and Supplementary Tables 1–11. (PDF 7286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janetzko, J., Trauger, S., Lazarus, M. et al. How the glycosyltransferase OGT catalyzes amide bond cleavage. Nat Chem Biol 12, 899–901 (2016). https://doi.org/10.1038/nchembio.2173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing