Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging structural insights into glycosyltransferase-mediated synthesis of glycans

Abstract

Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GT reaction mechanisms.
Fig. 2: Comparison of representative inverting and retaining catalytic mechanisms and enzyme topologies for substrate interactions.
Fig. 3: Structural gallery of eukaryotic GT-A fold inverting enzymes.
Fig. 4: Structural gallery of eukaryotic GT29 sialyltransferases as acceptor-bound complexes.
Fig. 5: Structural gallery of eukaryotic GT-A fold retaining enzymes.
Fig. 6: Glycosyltransferases recognizing linear peptides.
Fig. 7: Domain specific GTs (POFUT1, POFUT2, and POGLUT1) with substrates.

Similar content being viewed by others

References

  1. Cummings, R. D. & Pierce, J. M. The challenge and promise of glycomics. Chem. Biol. 21, 1–15 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Moremen, K. W., Tiemeyer, M. & Nairn, A. V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13, 448–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moremen, K. W. et al. Expression system for structural and functional studies of human glycosylation enzymes. Nat. Chem. Biol. 14, 156–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Barford, D. & Johnson, L. N. The allosteric transition of glycogen phosphorylase. Nature 340, 609–616 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Ju, T., Aryal, R. P., Kudelka, M. R., Wang, Y. & Cummings, R. D. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 14, 63–81 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rini, J.M. & Esko, J.D. in Essentials of Glycobiology (eds. Varki, A, Cummings, R.D., Esko, J.D. et al.) 65–75 (Cold Spring Harbor, NY, 2015).

  10. Levine, Z. G. & Walker, S. The biochemistry of O-GlcNAc transferase: which functions make it essential in mammalian cells? Annu. Rev. Biochem. 85, 631–657 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Bai, L. & Li, H. Cryo-EM is uncovering the mechanism of eukaryotic protein N-glycosylation. FEBS J. 286, 1638–1644 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Fujiwara, R., Yokoi, T. & Nakajima, M. Structure and protein-protein interactions of human UDP-glucuronosyltransferases. Front. Pharmacol. 7, 388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramakrishnan, B. & Qasba, P. K. Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I. J. Mol. Biol. 310, 205–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Qasba, P. K., Ramakrishnan, B. & Boeggeman, E. Structure and function of β-1,4-galactosyltransferase. Curr. Drug Targets 9, 292–309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramakrishnan, B., Balaji, P. V. & Qasba, P. K. Crystal structure of β1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site. J. Mol. Biol. 318, 491–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Gagnon, S. M. et al. High resolution structures of the human ABO(H) blood group enzymes in complex with donor analogs reveal that the enzymes utilize multiple donor conformations to bind substrates in a stepwise manner. J. Biol. Chem. 290, 27040–27052 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wagner, G. K., Pesnot, T., Palcic, M. M. & Jørgensen, R. Novel UDP-GalNAc derivative structures provide insight into the donor specificity of human blood group glycosyltransferase. J. Biol. Chem. 290, 31162–31172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breton, C., Snajdrová, L., Jeanneau, C., Koca, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R–37R (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Lira-Navarrete, E. et al. Structural insights into the mechanism of protein O-fucosylation. PLoS One 6, e25365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Z. et al. Recognition of EGF-like domains by the Notch-modifying O-fucosyltransferase POFUT1. Nat. Chem. Biol. 13, 757–763 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Urbanowicz, B. R. et al. Structural, mutagenic and in silico studies of xyloglucan fucosylation in Arabidopsis thaliana suggest a water-mediated mechanism. Plant J. 91, 931–949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, H. et al. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nat. Chem. Biol. 11, 847–854 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lira-Navarrete, E. et al. Substrate-guided front-face reaction revealed by combined structural snapshots and metadynamics for the polypeptide N-acetylgalactosaminyltransferase 2. Angew. Chem. Int. Edn Engl. 53, 8206–8210 (2014).

    Article  CAS  Google Scholar 

  24. Albesa-Jové, D. et al. A native ternary complex trapped in a crystal reveals the catalytic mechanism of a retaining glycosyltransferase. Angew. Chem. Int. Edn Engl. 54, 9898–9902 (2015).

    Article  CAS  Google Scholar 

  25. Albesa-Jové, D., Sainz-Polo, M. A., Marina, A. & Guerin, M. E. Structural snapshots of α-1,3-galactosyltransferase with native substrates: insight into the catalytic mechanism of retaining glycosyltransferases. Angew. Chem. Int. Edn Engl. 56, 14853–14857 (2017).

    Article  CAS  Google Scholar 

  26. Ramakrishnan, B. & Qasba, P. K. Crystal structure of the catalytic domain of Drosophila beta1,4-galactosyltransferase-7. J. Biol. Chem. 285, 15619–15626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hurtado-Guerrero, R. Recent structural and mechanistic insights into protein O-GalNAc glycosylation. Biochem. Soc. Trans. 44, 61–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Ardèvol, A., Iglesias-Fernández, J., Rojas-Cervellera, V. & Rovira, C. The reaction mechanism of retaining glycosyltransferases. Biochem. Soc. Trans. 44, 51–60 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Gómez, H., Mendoza, F., Lluch, J. M. & Masgrau, L. QM/MM studies reveal how substrate-substrate and enzyme-substrate interactions modulate retaining glycosyltransferases catalysis and mechanism. Adv. Protein Chem. Struct. Biol. 100, 225–254 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Schuman, B., Evans, S. V. & Fyles, T. M. Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism. PLoS One 8, e71077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kadirvelraj, R. et al. Human N-acetylglucosaminyltransferase II substrate recognition uses a modular architecture that includes a convergent exosite. Proc. Natl Acad. Sci. USA 115, 4637–4642 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gordon, R. D. et al. X-ray crystal structures of rabbit N-acetylglucosaminyltransferase I (GnT I) in complex with donor substrate analogues. J. Mol. Biol. 360, 67–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Pak, J. E. et al. X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J. Biol. Chem. 281, 26693–26701 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Pak, J. E., Satkunarajah, M., Seetharaman, J. & Rini, J. M. Structural and mechanistic characterization of leukocyte-type core 2 β1,6-N-acetylglucosaminyltransferase: a metal-ion-independent GT-A glycosyltransferase. J. Mol. Biol. 414, 798–811 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kuhn, B. et al. The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans. Acta Crystallogr. D Biol. Crystallogr. 69, 1826–1838 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Meng, L. et al. Enzymatic basis for N-glycan sialylation: structure of rat α2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation. J. Biol. Chem. 288, 34680–34698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rao, F. V. et al. Structural insight into mammalian sialyltransferases. Nat. Struct. Mol. Biol. 16, 1186–1188 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Volkers, G. et al. Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Nat. Struct. Mol. Biol. 22, 627–635 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Briggs, D. C. & Hohenester, E. Structural basis for the initiation of glycosaminoglycan biosynthesis by human xylosyltransferase 1. Structure 26, 801–809.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nagae, M. et al. Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat. Commun. 9, 3380 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rocha, J. et al. Structure of Arabidopsis thaliana FUT1 reveals a variant of the GT-B class fold and provides insight into xyloglucan fucosylation. Plant Cell 28, 2352–2364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Valero-González, J. et al. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2. Nat. Chem. Biol. 12, 240–246 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li, Z. et al. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat. Commun. 8, 185 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuwabara, N. et al. Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. Proc. Natl Acad. Sci. USA 113, 9280–9285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kakuda, S. et al. Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. J. Biol. Chem. 279, 22693–22703 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Pedersen, L. C. et al. Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J. Biol. Chem. 275, 34580–34585 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Alfaro, J. A. et al. ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes. J. Biol. Chem. 283, 10097–10108 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Culbertson, A. T., Ehrlich, J. J., Choe, J. Y., Honzatko, R. B. & Zabotina, O. A. Structure of xyloglucan xylosyltransferase 1 reveals simple steric rules that define biological patterns of xyloglucan polymers. Proc. Natl Acad. Sci. USA 115, 6064–6069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pedersen, L. C. et al. Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J. Biol. Chem. 278, 14420–14428 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Lazarus, M. B. et al. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat. Chem. Biol. 8, 966–968 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barresi, R. & Campbell, K. P. Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119, 199–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida-Moriguchi, T. & Campbell, K. P. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25, 702–713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sheikh, M. O., Halmo, S. M. & Wells, L. Recent advancements in understanding mammalian O-mannosylation. Glycobiology 27, 806–819 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shah, N., Kuntz, D. A. & Rose, D. R. Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc. Natl Acad. Sci. USA 105, 9570–9575 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhide, G. P. & Colley, K. J. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem. Cell Biol. 147, 149–174 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, X. & Varki, A. Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 5, 163–176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen, M. & Varki, A. The sialome—far more than the sum of its parts. OMICS 14, 455–464 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Datta, A. K. & Paulson, J. C. The sialyltransferase “sialylmotif” participates in binding the donor substrate CMP-NeuAc. J. Biol. Chem. 270, 1497–1500 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Harduin-Lepers, A., Mollicone, R., Delannoy, P. & Oriol, R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15, 805–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Harduin-Lepers, A. et al. The human sialyltransferase family. Biochimie 83, 727–737 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Dennis, J. W., Nabi, I. R. & Demetriou, M. Metabolism, cell surface organization, and disease. Cell 139, 1229–1241 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Buckhaults, P., Chen, L., Fregien, N. & Pierce, M. Transcriptional regulation of N-acetylglucosaminyltransferase V by the src oncogene. J. Biol. Chem. 272, 19575–19581 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Kang, R. et al. Transcriptional regulation of the N-acetylglucosaminyltransferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J. Biol. Chem. 271, 26706–26712 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Gu, J. et al. Purification and characterization of UDP-N-acetylglucosamine: alpha-6-d-mannoside beta 1-6N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line. J. Biochem. 113, 614–619 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Shoreibah, M. G., Hindsgaul, O. & Pierce, M. Purification and characterization of rat kidney UDP-N-acetylglucosamine: α-6-d-mannoside β-1,6-N-acetylglucosaminyltransferase. J. Biol. Chem. 267, 2920–2927 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Boscher, C., Dennis, J. W. & Nabi, I. R. Glycosylation, galectins and cellular signaling. Curr. Opin. Cell Biol. 23, 383–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Fritz, T. A., Raman, J. & Tabak, L. A. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J. Biol. Chem. 281, 8613–8619 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Lira-Navarrete, E. et al. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat. Commun. 6, 6937 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. de Las Rivas, M. et al. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nat. Commun. 8, 1959 (2017).

    Article  PubMed  CAS  Google Scholar 

  71. Takeuchi, H., Kantharia, J., Sethi, M. K., Bakker, H. & Haltiwanger, R. S. Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats. J. Biol. Chem. 287, 33934–33944 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luo, Y., Nita-Lazar, A. & Haltiwanger, R. S. Two distinct pathways for O-fucosylation of epidermal growth factor-like or thrombospondin type 1 repeats. J. Biol. Chem. 281, 9385–9392 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. & Spellman, M. W. Purification and characterization of a GDP-fucose:polypeptide fucosyltransferase from Chinese hamster ovary cells. J. Biol. Chem. 273, 8112–8118 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Varshney, S. & Stanley, P. Multiple roles for O-glycans in Notch signalling. FEBS Lett. 592, 3819–3834 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harvey, B. M. & Haltiwanger, R. S. Regulation of Notch function by O-glycosylation. Adv. Exp. Med. Biol. 1066, 59–78 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Holdener, B. C. & Haltiwanger, R. S. Protein O-fucosylation: structure and function. Curr. Opin. Struct. Biol. 56, 78–86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu, H. & Takeuchi, H. Protein O-glucosylation: another essential role of glucose in biology. Curr. Opin. Struct. Biol. 56, 64–71 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Schneider, M., Al-Shareffi, E. & Haltiwanger, R. S. Biological functions of fucose in mammals. Glycobiology 27, 601–618 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Benz, B. A. et al. Genetic and biochemical evidence that gastrulation defects in Pofut2 mutants result from defects in ADAMTS9 secretion. Dev. Biol. 416, 111–122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Du, J. et al. O-fucosylation of thrombospondin type 1 repeats restricts epithelial to mesenchymal transition (EMT) and maintains epiblast pluripotency during mouse gastrulation. Dev. Biol. 346, 25–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu, H. et al. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations. Nat. Chem. Biol. 12, 735–740 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Takeuchi, H. et al. O-Glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. J. Biol. Chem. 292, 15964–15973 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vasudevan, D., Takeuchi, H., Johar, S. S., Majerus, E. & Haltiwanger, R. S. Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. Curr. Biol. 25, 286–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Lira-Navarrete, E. & Hurtado-Guerrero, R. A perspective on structural and mechanistic aspects of protein O-fucosylation. Acta Crystallogr. F Struct. Biol. Commun. 74, 443–450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wild, R. et al. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science 359, 545–550 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Bai, L., Wang, T., Zhao, G., Kovach, A. & Li, H. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature 555, 328–333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Braunger, K. et al. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science 360, 215–219 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thiyagarajan, N. et al. Structure of a metal-independent bacterial glycosyltransferase that catalyzes the synthesis of histo-blood group A antigen. Sci. Rep. 2, 940 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Tiemeyer and H. Takeuchi for providing useful comments. Original work in the author’s laboratories is supported by NIH grants P01GM107012, P41GM103390, U01GM120408, R01GM130915 (K.W.M.) and GM061126, HD090156, HD096030 (R.S.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kelley W. Moremen or Robert S. Haltiwanger.

Ethics declarations

Competing interests

K.W.M. acknowledges ownership interest and roles as President and CEO of Glyco Expression Technologies, Inc., a biotechnology spinout commercializing recombinant glycosyltransferases, and may conceivably profit from the results described herein.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure 1

Timeline of published GT structures. The GT structures in PDB from all domains of life were collated in Supplementary Dataset 1.

Supplementary Dataset 1

Summary of glycosyltransferase structures in PDB (January 2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moremen, K.W., Haltiwanger, R.S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol 15, 853–864 (2019). https://doi.org/10.1038/s41589-019-0350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0350-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing