Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Loss of protein association causes cardiolipin degradation in Barth syndrome

Abstract

Cardiolipin is a specific mitochondrial phospholipid that has a high affinity for proteins and that stabilizes the assembly of supercomplexes involved in oxidative phosphorylation. We found that sequestration of cardiolipin in protein complexes is critical to protect it from degradation. The turnover of cardiolipin is slower by almost an order of magnitude than the turnover of other phospholipids. However, in subjects with Barth syndrome, cardiolipin is rapidly degraded via the intermediate monolyso-cardiolipin. Treatments that induce supercomplex assembly decrease the turnover of cardiolipin and the concentration of monolyso-cardiolipin, whereas dissociation of supercomplexes has the opposite effect. Our data suggest that cardiolipin is uniquely protected from normal lipid turnover by its association with proteins, but this association is compromised in subjects with Barth syndrome, leading cardiolipin to become unstable, which in turn causes the accumulation of monolyso-cardiolipin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Acyl turnover of CL is increased in lymphoblasts from subjects with BTHS.
Figure 2: Tafazzin deficiency increases the glycerol turnover of CL in Drosophila and mammalian cells.
Figure 3: MLCL is present in intact mitochondria with normal protein turnover.
Figure 4: CL, but not MLCL, is associated with proteins.
Figure 5: Supercomplexes protect CL from degradation.
Figure 6: Unsaturated fatty acids stabilize CL.

References

  1. 1

    Mileykovskaya, E. & Dowhan, W. Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem. Phys. Lipids 179, 42–48 (2014).

    CAS  PubMed  Google Scholar 

  2. 2

    Ren, M., Phoon, C.K.L. & Schlame, M. Metabolism and function of mitochondrial cardiolipin. Prog. Lipid Res. 55, 1–16 (2014).

    CAS  PubMed  Google Scholar 

  3. 3

    Lewis, R.N.A.H. & McElhaney, R.N. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim. Biophys. Acta 1788, 2069–2079 (2009).

    CAS  PubMed  Google Scholar 

  4. 4

    Zhang, M., Mileykovskaya, E. & Dowhan, W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 277, 43553–43556 (2002).

    CAS  PubMed  Google Scholar 

  5. 5

    Althoff, T., Mills, D.J., Popot, J.L. & Kühlbrandt, W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 30, 4652–4664 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Mileykovskaya, E. et al. Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy. J. Biol. Chem. 287, 23095–23103 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Barth, P.G. et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci. 62, 327–355 (1983).

    CAS  Google Scholar 

  8. 8

    Bione, S. et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat. Genet. 12, 385–389 (1996).

    CAS  Google Scholar 

  9. 9

    Xu, Y., Malhotra, A., Ren, M. & Schlame, M. The enzymatic function of tafazzin. J. Biol. Chem. 281, 39217–39224 (2006).

    CAS  Google Scholar 

  10. 10

    Schlame, M. et al. The physical state of lipid substrates provides transacylation specificity for tafazzin. Nat. Chem. Biol. 8, 862–869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Vreken, P. et al. Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem. Biophys. Res. Commun. 279, 378–382 (2000).

    CAS  PubMed  Google Scholar 

  12. 12

    Schlame, M. et al. Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann. Neurol. 51, 634–637 (2002).

    CAS  Google Scholar 

  13. 13

    Gu, Z. et al. Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol. Microbiol. 51, 149–158 (2004).

    CAS  PubMed  Google Scholar 

  14. 14

    Valianpour, F. et al. Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis. J. Lipid Res. 46, 1182–1195 (2005).

    CAS  PubMed  Google Scholar 

  15. 15

    Claypool, S.M. & Koehler, C.M. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37, 32–41 (2012).

    CAS  PubMed  Google Scholar 

  16. 16

    Landriscina, C., Megli, F.M. & Quagliariello, E. Turnover of fatty acids in rat liver cardiolipin: comparison with other mitochondrial phospholipids. Lipids 11, 61–66 (1976).

    CAS  PubMed  Google Scholar 

  17. 17

    Wahjudi, P.N. et al. Turnover of non-essential fatty acids in cardiolipin from the rat heart. J. Lipid Res. 52, 2226–2233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Xu, Y. & Schlame, M. The turnover of glycerol and acyl moieties of cardiolipin. Chem. Phys. Lipids 179, 17–24 (2014).

    CAS  PubMed  Google Scholar 

  19. 19

    Baile, M.G. et al. Unremodeled and remodeled cardiolipin are functionally indistinguishable in yeast. J. Biol. Chem. 289, 1768–1778 (2014).

    CAS  PubMed  Google Scholar 

  20. 20

    Ye, C. et al. Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome. J. Biol. Chem. 289, 3114–3125 (2014).

    CAS  PubMed  Google Scholar 

  21. 21

    Liebisch, G. et al. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54, 1523–1530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Hellerstein, M.K. et al. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J. Clin. Invest. 87, 1841–1852 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Kelleher, J.K. & Masterson, T.M. Model equations for condensation biosynthesis using stable isotopes and radioisotopes. Am. J. Physiol. 262, E118–E125 (1992).

    CAS  PubMed  Google Scholar 

  24. 24

    Xu, Y., Sutachan, J.J., Plesken, H., Kelley, R.I. & Schlame, M. Characterization of lymphoblast mitochondria from patients with Barth syndrome. Lab. Invest. 85, 823–830 (2005).

    CAS  PubMed  Google Scholar 

  25. 25

    Xu, Y. et al. A Drosophila model of Barth syndrome. Proc. Natl. Acad. Sci. USA 103, 11584–11588 (2006).

    CAS  PubMed  Google Scholar 

  26. 26

    Dudek, J. et al. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res. 11, 806–819 (2013).

    CAS  PubMed  Google Scholar 

  27. 27

    Beyer, K. & Klingenberg, M. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24, 3821–3826 (1985).

    CAS  PubMed  Google Scholar 

  28. 28

    Eble, K.S., Coleman, W.B., Hantgan, R.R. & Cunningham, C.C. Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J. Biol. Chem. 265, 19434–19440 (1990).

    CAS  PubMed  Google Scholar 

  29. 29

    Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Lin, J., Handschin, C. & Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    PubMed  PubMed Central  Google Scholar 

  31. 31

    Hofer, A. et al. Defining the action spectrum of potential PGC-1α activators on a mitochondrial and cellular level in vivo. Hum. Mol. Genet. 23, 2400–2415 (2014).

    CAS  PubMed  Google Scholar 

  32. 32

    Brandner, K. et al. Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth syndrome. Mol. Biol. Cell 16, 5202–5214 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    McKenzie, M., Lazarou, M., Thorburn, D.R. & Ryan, M.T. Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J. Mol. Biol. 361, 462–469 (2006).

    CAS  PubMed  Google Scholar 

  34. 34

    Pereira da Silva, A.P. et al. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem. J. 417, 717–726 (2009).

    CAS  PubMed  Google Scholar 

  35. 35

    Macchioni, L., Davidescu, M., Roberti, R. & Corazzi, L. The energy blockers 3-bromopyruvate and lonidamine: effects on bioenergetics of brain mitochondria. J. Bioenerg. Biomembr. 46, 389–394 (2014).

    CAS  PubMed  Google Scholar 

  36. 36

    Davidescu, M. et al. Bromopyruvate mediates autophagy and cardiolipin degradation to monolyso-cardiolipin in GL15 glioblastoma cells. J. Bioenerg. Biomembr. 44, 51–60 (2012).

    CAS  PubMed  Google Scholar 

  37. 37

    Valianpour, F. et al. Linoleic acid supplementation of Barth syndrome fibroblasts restores cardiolipin levels: implications for treatment. J. Lipid Res. 44, 560–566 (2003).

    CAS  PubMed  Google Scholar 

  38. 38

    Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Schlame, M., Horvath, L. & Vigh, L. Relationship between lipid saturation and lipid-protein interaction in liver mitochondria modified by catalytic hydrogenation with reference to cardiolipin molecular species. Biochem. J. 265, 79–85 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Acin-Perez, R. & Enriquez, J.A. The function of the respiratory supercomplexes: the plasticity model. Biochim. Biophys. Acta 1837, 444–450 (2014).

    CAS  PubMed  Google Scholar 

  41. 41

    Spencer, C.T. et al. Cardiac and clinical phenotype in Barth syndrome. Pediatrics 118, e337 (2006).

    PubMed  Google Scholar 

  42. 42

    Clarke, S.L. et al. Barth syndrome. Orphanet J. Rare Dis. 8, 23 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Soustek, M.S. et al. Characterization of a transgenic short hairpin RNA-induced murine model of tafazzin deficiency. Hum. Gene Ther. 22, 865–871 (2011).

    CAS  PubMed  Google Scholar 

  44. 44

    Acehan, D. et al. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J. Biol. Chem. 286, 899–908 (2011).

    CAS  PubMed  Google Scholar 

  45. 45

    Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  PubMed  Google Scholar 

  46. 46

    Sun, G. et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal. Chem. 80, 7576–7585 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Kharroubi, A.T., Masterson, T.M., Aldaghlas, T.A., Kennedy, K.A. & Kelleher, J.K. Isotopomer spectral analysis of triglyceride fatty acid synthesis in 3T3-L1 cells. Am. J. Physiol. 263, E667–E675 (1992).

    CAS  PubMed  Google Scholar 

  48. 48

    Wittig, I., Braun, H.P. & Schägger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    CAS  PubMed  Google Scholar 

  49. 49

    Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  PubMed  Google Scholar 

  50. 50

    Zhang, G., Deinhardt, K., Chao, M.V. & Neubert, T.A. Study of neurotrophin 3 signaling in primary cultured neurons using multiplex stable isotope labeling with amino acids in cell culture. J. Proteome Res. 10, 2546–2554 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Institutes of Health (grant 1R01GM115593 to M.S., Shared Instrumentation Grant RR027990 to T.A.N., and NINDS core center grant NS050276 to T.A.N.). Funds were also provided by the Barth Syndrome Foundation (to C.K.L.P. and R.M.E.). Mouse embryonic stem cells with and without tafazzin knockout were obtained from Z. Khuchua (Cincinnati Children's Hospital, Cincinnati, Ohio, USA).

Author information

Affiliations

Authors

Contributions

Y.X., C.K.L.P., M.R., and M.S. performed experiments and analyzed data. B.B., K.D., R.M.E., and M.S. designed and performed the NMR experiments. E.H., G.Z., and T.A.N. designed and performed the proteomics analyses. M.S. supervised the entire study and wrote the paper. C.K.L.P., T.A.N., M.R., and R.M.E. revised the manuscript.

Corresponding author

Correspondence to Michael Schlame.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–8. (PDF 1704 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Phoon, C., Berno, B. et al. Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat Chem Biol 12, 641–647 (2016). https://doi.org/10.1038/nchembio.2113

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing