Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds

Abstract

Many psychiatric drugs act on multiple targets and therefore require screening assays that encompass a wide target space. With sufficiently rich phenotyping and a large sampling of compounds, it should be possible to identify compounds with desired mechanisms of action on the basis of behavioral profiles alone. Although zebrafish (Danio rerio) behavior has been used to rapidly identify neuroactive compounds, it is not clear what types of behavioral assays would be necessary to identify multitarget compounds such as antipsychotics. Here we developed a battery of behavioral assays in larval zebrafish to determine whether behavioral profiles can provide sufficient phenotypic resolution to identify and classify psychiatric drugs. Using the antipsychotic drug haloperidol as a test case, we found that behavioral profiles of haloperidol-treated zebrafish could be used to identify previously uncharacterized compounds with desired antipsychotic-like activities and multitarget mechanisms of action.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Antipsychotics and other psychiatric drugs affect zebrafish behavior.
Figure 2: Antipsychotic drugs cause specific behavioral profiles in the test battery.
Figure 3: Haloperidol causes complex behavioral phenotypes in the zebrafish.
Figure 4: Hit compounds show haloperidol-like target profiles.
Figure 5: Finazine phenocopies haloperidol in zebrafish and in mice.

References

  1. Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    CAS  Article  Google Scholar 

  2. Kokel, D. & Peterson, R.T. Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief. Funct. Genomics Proteomics 7, 483–490 (2008).

    CAS  Article  Google Scholar 

  3. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    CAS  Article  Google Scholar 

  4. Paul, S.M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    CAS  Article  Google Scholar 

  5. López-Muñoz, F. & Alamo, C. The consolidation of neuroleptic therapy: Janssen, the discovery of haloperidol and its introduction into clinical practice. Brain Res. Bull. 79, 130–141 (2009).

    Article  Google Scholar 

  6. Hippius, H. The history of clozapine. Psychopharmacology (Berl.) 99 (suppl.), S3–S5 (1989).

    Article  Google Scholar 

  7. Conn, P.J. & Roth, B.L. Opportunities and challenges of psychiatric drug discovery: roles for scientists in academic, industry, and government settings. Neuropsychopharmacology 33, 2048–2060 (2008).

    CAS  Article  Google Scholar 

  8. World Health Organization. WHO Model List of Essential Medicines: 18th List, April 2013 (WHO, 2013).

  9. Meltzer, H.Y. An overview of the mechanism of action of clozapine. J. Clin. Psychiatry 55 (suppl. B): 47–52 (1994).

    PubMed  Google Scholar 

  10. Lieberman, J.A. et al. The effects of clozapine on tardive dyskinesia. Br. J. Psychiatry 158, 503–510 (1991).

    CAS  Article  Google Scholar 

  11. Lieberman, J.A. et al. Clozapine-induced agranulocytosis: non-cross-reactivity with other psychotropic drugs. J. Clin. Psychiatry 49, 271–277 (1988).

    CAS  PubMed  Google Scholar 

  12. Hyman, S.E. Revolution stalled. Sci. Transl. Med. 4, 155cm11 (2012).

    Article  Google Scholar 

  13. Wolman, M.A., Jain, R.A., Liss, L. & Granato, M. Chemical modulation of memory formation in larval zebrafish. Proc. Natl. Acad. Sci. USA 108, 15468–15473 (2011).

    CAS  Article  Google Scholar 

  14. Baraban, S.C., Dinday, M.T. & Hortopan, G.A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4, 2410 (2013).

    Article  Google Scholar 

  15. Bencan, Z., Sledge, D. & Levin, E.D. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol. Biochem. Behav. 94, 75–80 (2009).

    CAS  Article  Google Scholar 

  16. López-Patiño, M.A., Yu, L., Cabral, H. & Zhdanova, I.V. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol. Behav. 93, 160–171 (2008).

    Article  Google Scholar 

  17. Egan, R.J. et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205, 38–44 (2009).

    CAS  Article  Google Scholar 

  18. Giacomini, N.J., Rose, B., Kobayashi, K. & Guo, S. Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol. Teratol. 28, 245–250 (2006).

    CAS  Article  Google Scholar 

  19. Rihel, J. et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348–351 (2010).

    CAS  Article  Google Scholar 

  20. Kokel, D. et al. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat. Chem. Biol. 6, 231–237 (2010).

    CAS  Article  Google Scholar 

  21. Kokel, D. et al. Photochemical activation of TRPA1 channels in neurons and animals. Nat. Chem. Biol. 9, 257–263 (2013).

    CAS  Article  Google Scholar 

  22. Bymaster, F.P. et al. Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology 25, 871–880 (2001).

    CAS  Article  Google Scholar 

  23. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  24. Boulay, D. et al. Haloperidol-induced catalepsy is absent in dopamine D(2), but maintained in dopamine D(3) receptor knock-out mice. Eur. J. Pharmacol. 391, 63–73 (2000).

    CAS  Article  Google Scholar 

  25. Dubinsky, B. et al. Bromperidol, a new butyrophenone neuroleptic: a review. Psychopharmacology (Berl.) 78, 1–7 (1982).

    CAS  Article  Google Scholar 

  26. Lecrubier, Y. A partial D3 receptor agonist in schizophrenia. Eur. Neuropsychopharmacol. 13, S167–S168 (2003).

    Article  Google Scholar 

  27. Peroutka, S.J. & Synder, S.H. Relationship of neuroleptic drug effects at brain dopamine, serotonin, α-adrenergic, and histamine receptors to clinical potency. Am. J. Psychiatry 137, 1518–1522 (1980).

    CAS  Article  Google Scholar 

  28. Keiser, M.J. et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206 (2007).

    CAS  Article  Google Scholar 

  29. Lounkine, E. et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486, 361–367 (2012).

    CAS  Article  Google Scholar 

  30. Rennekamp, A.J. et al. σ1 receptor ligands control a switch between passive and active threat responses. Nat. Chem. Biol. doi:10.1038/nchembiol.2089 (2016).

  31. Hayashi, T. & Su, T. The sigma receptor: evolution of the concept in neuropsychopharmacology. Curr. Neuropharmacol. 3, 267–280 (2005).

    CAS  Article  Google Scholar 

  32. Jentsch, J.D. & Roth, R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20, 201–225 (1999).

    CAS  Article  Google Scholar 

  33. Gleason, S.D. & Shannon, H.E. Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice. Psychopharmacology (Berl.) 129, 79–84 (1997).

    CAS  Article  Google Scholar 

  34. Freed, W.J., Bing, L.A. & Wyatt, R.J. Effects of neuroleptics on phencyclidine (PCP)-induced locomotor stimulation in mice. Neuropharmacology 23 2A, 175–181 (1984).

    CAS  Article  Google Scholar 

  35. Porsolt, R.D., Moser, P.C. & Castagné, V. Behavioral indices in antipsychotic drug discovery. J. Pharmacol. Exp. Ther. 333, 632–638 (2010).

    CAS  Article  Google Scholar 

  36. Castagné, V., Moser, P.C. & Porsolt, R.D. Preclinical behavioral models for predicting antipsychotic activity. Adv. Pharmacol. 57, 381–418 (2009).

    Article  Google Scholar 

  37. Hoffman, D.C. & Donovan, H. Catalepsy as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. Psychopharmacology (Berl.) 120, 128–133 (1995).

    CAS  Article  Google Scholar 

  38. Irwin, S. Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13, 222–257 (1968).

    CAS  Article  Google Scholar 

  39. Houle, D., Govindaraju, D.R. & Omholt, S. Phenomics: the next challenge. Nat. Rev. Genet. 11, 855–866 (2010).

    CAS  Article  Google Scholar 

  40. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  Article  Google Scholar 

  41. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  Article  Google Scholar 

  42. Gunsalus, K.C., Yueh, W.-C., MacMenamin, P. & Piano, F. RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects. Nucleic Acids Res. 32, D406–D410 (2004).

    CAS  Article  Google Scholar 

  43. Jin, K. et al. PhenoM: a database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae. Nucleic Acids Res. 40, D687–D694 (2012).

    CAS  Article  Google Scholar 

  44. Kokel, D., Rennekamp, A.J., Shah, A.H., Liebel, U. & Peterson, R.T. Behavioral barcoding in the cloud: embracing data-intensive digital phenotyping in neuropharmacology. Trends Biotechnol. 30, 421–425 (2012).

    CAS  Article  Google Scholar 

  45. Ahrens, M.B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    CAS  Article  Google Scholar 

  46. Pardo-Martin, C. et al. High-throughput in vivo vertebrate screening. Nat. Methods 7, 634–636 (2010).

    CAS  Article  Google Scholar 

  47. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    CAS  Article  Google Scholar 

  48. Vardy, E. et al. Single amino acid variation underlies species-specific sensitivity to amphibian skin-derived opioid-like peptides. Chem. Biol. 22, 764–775 (2015).

    CAS  Article  Google Scholar 

  49. McGonigle, P. Animal models of CNS disorders. Biochem. Pharmacol. 87, 140–149 (2014).

    CAS  Article  Google Scholar 

  50. Arana, G.W. An overview of side effects caused by typical antipsychotics. J. Clin. Psychiatry 61 (suppl. 8), 5–11 (2000).

    CAS  PubMed  Google Scholar 

  51. Pangalos, M.N., Schechter, L.E. & Hurko, O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov. 6, 521–532 (2007).

    CAS  Article  Google Scholar 

  52. Landrum, G. RDKit: Open-Source Cheminformatics http://www.rdkit.org (GitHub and SourceForge, accessed January 2015).

Download references

Acknowledgements

We thank members of our research groups for helpful advice. This work was supported by US National Institutes of Health (NIH) grants K01MH091449, U01MH105027 and R01AA022583 (D.K.); R44GM093456 (M.J.K.), T32EB009383 and T32GM008284 (L.G.) and R01MH086867 and R21MH085205 (R.T.P.); the Charles and Ann Sanders MGH Research Scholar Award (R.T.P.); and the Glenn Foundation Award for Research in Biological Mechanisms of Aging (D.K. and M.J.K.).

Author information

Authors and Affiliations

Authors

Contributions

G.B. performed the behavior-based chemical screen and preliminary analysis of the data. A.J.R. assisted with the zebrafish assays, experimental design, analysis of the finazine data and with the manuscript preparation. A.V. designed statistical analyses to profile the reference set and analyze zebrafish data. L.G. performed target prediction and enrichment calculations and interpreted data with M.J.K. M.M., E.F., J.T., P.L., D.L., T.E. and G.C. performed the zebrafish behavioral profiling and interpreted the data. P.J.L. performed the rodent work and analyzed the data with B.J.C. X.-P.H. performed the target binding assays and analyzed the data with B.L.R. S.K. and E.P. designed the psychiatric drug reference set. R.T.P. and D.K. designed the experiments and wrote the paper. All authors analyzed the data and edited the manuscript.

Corresponding author

Correspondence to David Kokel.

Ethics declarations

Competing interests

A.J.R., D.K. and R.T.P. are inventors on a pending patent application, PCT/US2015/037755, covering the finazine compounds described in this manuscript. A.V., T.E., G.C. and D.L. are full-time employees of Teleos Therapeutics. D.K. and R.T.P. consult for Teleos Therapeutics. S.K. and E.P. are full-time employees of F. Hoffmann–La Roche Ltd.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Tables 1–8. (PDF 1642 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bruni, G., Rennekamp, A., Velenich, A. et al. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol 12, 559–566 (2016). https://doi.org/10.1038/nchembio.2097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2097

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing