Chemoproteomic profiling of host and pathogen enzymes active in cholera

An Erratum to this article was published on 18 May 2016

This article has been updated


Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human choleric stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, and genetic disruption of all four proteases increased the abundance of intelectin, an intestinal lectin, and its binding to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting that it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialog in an animal model of infection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: ABPP detects active serine hydrolases in rabbit cecal fluid and human choleric stool.
Figure 2: Predicted protein domain structures of IvaP, VCA0812, VesA and VesB.
Figure 3: IvaP undergoes growth phase–dependent processing and autoproteolysis.
Figure 4: V. cholerae proteases alter the serine hydrolase activity, lipid profile and protein content of rabbit cecal fluid.
Figure 5: V. cholerae proteases decrease intelectin binding to V. cholerae in infected rabbits.

Change history

  • 23 March 2016

    Within the Discussion section, one instance referring to the published crystal structure of trimeric human intelectin-1 was attributed to reference 47 instead of the correct reference 44. The error has been corrected in the HTML and PDF versions of the article.


  1. 1

    Ivarsson, M.E., Leroux, J.C. & Castagner, B. Targeting bacterial toxins. Angew. Chem. Int. Edn. Engl. 51, 4024–4045 (2012).

    Article  CAS  Google Scholar 

  2. 2

    Kilian, M., Mestecky, J. & Russell, M.W. Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases. Microbiol. Rev. 52, 296–303 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Ruiz-Perez, F. & Nataro, J.P. Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell. Mol. Life Sci. 71, 745–770 (2014).

    Article  CAS  Google Scholar 

  4. 4

    Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    CAS  Google Scholar 

  5. 5

    Puri, A.W. & Bogyo, M. Applications of small molecule probes in dissecting mechanisms of bacterial virulence and host responses. Biochemistry 52, 5985–5996 (2013).

    Article  CAS  Google Scholar 

  6. 6

    Ritchie, J.M. & Waldor, M.K. Vibrio cholerae interactions with the gastrointestinal tract: lessons from animal studies. Curr. Top. Microbiol. Immunol. 337, 37–59 (2009).

    CAS  PubMed  Google Scholar 

  7. 7

    Sikora, A.E. Proteins secreted via the type II secretion system: smart strategies of Vibrio cholerae to maintain fitness in different ecological niches. PLoS Pathog. 9, e1003126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Simon, G.M. & Cravatt, B.F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  Google Scholar 

  10. 10

    Patricelli, M.P., Giang, D.K., Stamp, L.M. & Burbaum, J.J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).

    Article  CAS  Google Scholar 

  11. 11

    Shaw, D.K., Hyde, J.A. & Skare, J.T. The BB0646 protein demonstrates lipase and haemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol. Microbiol. 83, 319–334 (2012).

    Article  CAS  Google Scholar 

  12. 12

    Weadge, J.T. & Clarke, A.J. Neisseria gonorrheae O-acetylpeptidoglycan esterase, a serine esterase with a Ser-His-Asp catalytic triad. Biochemistry 46, 4932–4941 (2007).

    Article  CAS  Google Scholar 

  13. 13

    Stroud, R.M., Kossiakoff, A.A. & Chambers, J.L. Mechanisms of zymogen activation. Annu. Rev. Biophys. Bioeng. 6, 177–193 (1977).

    Article  CAS  Google Scholar 

  14. 14

    Gloeckl, S. et al. Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis. Mol. Microbiol. 89, 676–689 (2013).

    Article  CAS  Google Scholar 

  15. 15

    Hauske, P. et al. Selectivity profiling of DegP substrates and inhibitors. Bioorg. Med. Chem. 17, 2920–2924 (2009).

    Article  CAS  Google Scholar 

  16. 16

    Steuber, H. & Hilgenfeld, R. Recent advances in targeting viral proteases for the discovery of novel antivirals. Curr. Top. Med. Chem. 10, 323–345 (2010).

    Article  CAS  Google Scholar 

  17. 17

    Tsuji, S. et al. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J. Biol. Chem. 276, 23456–23463 (2001).

    Article  CAS  Google Scholar 

  18. 18

    Ritchie, J.M., Rui, H., Bronson, R.T. & Waldor, M.K. Back to the future: studying cholera pathogenesis using infant rabbits. MBio 1, e00047–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Bachovchin, D.A. et al. A high-throughput, multiplexed assay for superfamily-wide profiling of enzyme activity. Nat. Chem. Biol. 10, 656–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Weerapana, E., Speers, A.E. & Cravatt, B.F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2, 1414–1425 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

  22. 22

    Faruque, S.M. et al. Transmissibility of cholera: in vivo–formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl. Acad. Sci. USA 103, 6350–6355 (2006).

    Article  CAS  Google Scholar 

  23. 23

    Tamayo, R., Patimalla, B. & Camilli, A. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect. Immun. 78, 3560–3569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  Google Scholar 

  25. 25

    Yeats, C., Bentley, S. & Bateman, A. New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiol. 3, 3 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Gadwal, S., Korotkov, K.V., Delarosa, J.R., Hol, W.G. & Sandkvist, M. Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB. J. Biol. Chem. 289, 8288–8298 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Sikora, A.E., Zielke, R.A., Lawrence, D.A., Andrews, P.C. & Sandkvist, M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J. Biol. Chem. 286, 16555–16566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Siezen, R.J. & Leunissen, J.A. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6, 501–523 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Altindis, E., Fu, Y. & Mekalanos, J.J. Proteomic analysis of Vibrio cholerae outer membrane vesicles. Proc. Natl. Acad. Sci. USA 111, E1548–E1556 (2014).

    Article  CAS  Google Scholar 

  30. 30

    Smith, D.R. et al. In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc. Natl. Acad. Sci. USA 112, 10491–10496 (2015).

    Article  CAS  Google Scholar 

  31. 31

    Park, B.R. et al. A metalloprotease secreted by the type II secretion system links Vibrio cholerae with collagen. J. Bacteriol. 197, 1051–1064 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Chalfoun, N.R. et al. Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor. J. Biol. Chem. 288, 14098–14113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Mandlik, A. et al. RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10, 165–174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Fiore, A.E., Michalski, J.M., Russell, R.G., Sears, C.L. & Kaper, J.B. Cloning, characterization, and chromosomal mapping of a phospholipase (lecithinase) produced by Vibrio cholerae. Infect. Immun. 65, 3112–3117 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Pride, A.C., Herrera, C.M., Guan, Z., Giles, D.K. & Trent, M.S. The outer surface lipoprotein VolA mediates utilization of exogenous lipids by Vibrio cholerae. MBio 4, e00305–13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Lundwall, A. & Brattsand, M. Kallikrein-related peptidases. Cell. Mol. Life Sci. 65, 2019–2038 (2008).

    Article  CAS  Google Scholar 

  37. 37

    Holmes, R.S. & Cox, L.A. Comparative structures and evolution of vertebrate carboxyl ester lipase (CEL) genes and proteins with a major role in reverse cholesterol transport. Cholesterol 2011, 781643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Pedersen, L.L. & Turco, S.J. Galactofuranose metabolism: a potential target for antimicrobial chemotherapy. Cell. Mol. Life Sci. 60, 259–266 (2003).

    Article  CAS  Google Scholar 

  39. 39

    Wrackmeyer, U., Hansen, G.H., Seya, T. & Danielsen, E.M. Intelectin: a novel lipid raft-associated protein in the enterocyte brush border. Biochemistry 45, 9188–9197 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Pemberton, A.D. et al. Innate BALB/c enteric epithelial responses to Trichinella spiralis: inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10 mice. J. Immunol. 173, 1894–1901 (2004).

    Article  CAS  Google Scholar 

  41. 41

    Voehringer, D. et al. Nippostrongylus brasiliensis: identification of intelectin-1 and -2 as Stat6-dependent genes expressed in lung and intestine during infection. Exp. Parasitol. 116, 458–466 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Ellis, C.N. et al. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect. Immun. 83, 1089–1103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Tsuji, S. et al. Capture of heat-killed Mycobacterium bovis bacillus Calmette-Guérin by intelectin-1 deposited on cell surfaces. Glycobiology 19, 518–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Wesener, D.A. et al. Recognition of microbial glycans by human intelectin-1. Nat. Struct. Mol. Biol. 22, 603–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Varina, M., Denkin, S.M., Staroscik, A.M. & Nelson, D.R. Identification and characterization of Epp, the secreted processing protease for the Vibrio anguillarum EmpA metalloprotease. J. Bacteriol. 190, 6589–6597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Bracco, U. Effect of triglyceride structure on fat absorption. Am. J. Clin. Nutr. 60 (suppl. 6): 1002S–1009S (1994).

    Article  CAS  Google Scholar 

  47. 47

    Drzazga, A., Sowińska, A. & Koziołkiewicz, M. Lysophosphatidylcholine and lysophosphatidylinosiol—novel promising signaling molecules and their possible therapeutic activity. Acta Pol. Pharm. 71, 887–899 (2014).

    PubMed  Google Scholar 

  48. 48

    Suzuki, Y.A., Shin, K. & Lönnerdal, B. Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry 40, 15771–15779 (2001).

    Article  CAS  Google Scholar 

  49. 49

    Yang, R.Z. et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 290, E1253–E1261 (2006).

    Article  CAS  Google Scholar 

  50. 50

    Hatzios, S.K., Ringgaard, S., Davis, B.M. & Waldor, M.K. Studies of dynamic protein-protein interactions in bacteria using Renilla luciferase complementation are undermined by nonspecific enzyme inhibition. PLoS ONE 7, e43175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Abel, S. & Waldor, M.K. Infant rabbit model for diarrheal diseases. Curr. Protoc. Microbiol. 38, 6A.6.1–6A.6.15 (2015).

    Article  Google Scholar 

  52. 52

    Vizcaíno, J.A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Kamat, S.S. et al. Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat. Chem. Biol. 11, 164–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  Google Scholar 

  55. 55

    Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  56. 56

    Breslow, N.E. & Clayton, D.G. Approximate interference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993).

    Google Scholar 

  57. 57

    Wolfinger, R. & O'Connell, M. Generalized linear mixed models: a pseudo-likelihood approach. J. Stat. Comput. Simul. 48, 233–243 (1993).

    Article  Google Scholar 

  58. 58

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  59. 59

    Venables, W.N. & Ripley, B.D. Modern Applied Statistics with S 4th edn. (Springer, 2002).

Download references


We gratefully acknowledge R. LaRocque, Y. Millet and J. Lee for reagents and technical assistance, and members of M.K.W.'s lab for helpful discussions. We also thank V. Carey for the statistical analysis of MS data and D. Bak for help formatting MS data sets. This work was supported by the National Institutes of Health (R37 AI-042347 to M.K.W., F31 AI-120665 to T.H., R01 AI-106878 and U01 AI-058935 to E.T.R., Institutional Training Grant T32 DK 7477-30 to S.K.H.), the Howard Hughes Medical Institute (M.K.W.), the Charles A. King Trust Postdoctoral Fellowship Program, Bank of America, N.A., Co-Trustee (S.K.H.), the Damon Runyon Cancer Research Foundation (DRR-18-12 to E.W.), the Smith Family Foundation (E.W.) and the Swiss National Science Foundation (P300P3_155287/1 to S.A.).

Author information




S.K.H., E.W. and M.K.W. conceived the project and designed the experiments. S.K.H. generated the V. cholerae mutant strains, performed all biochemistry and ABPP experiments and analyzed the MS data. S.A., T.H. and D.M. performed the rabbit infections. J.M. performed the MS experiments and assisted with MS data analysis. J.S. provided technical guidance on intelectin assays. L.C. assisted with the construction of V. cholerae mutant strains. D.A.B. synthesized FP-biotin. F.Q. and E.T.R. provided the human choleric stool used in this study. S.K.H., B.M.D., and M.K.W. wrote the manuscript.

Corresponding authors

Correspondence to Eranthie Weerapana or Matthew K Waldor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–9 and Supplementary Figures 1–10. (PDF 7161 kb)

Supplementary Data Set 1

FP-biotin-enriched proteins detected in wild-type cecal fluid, comparative ABPP-MudPIT analysis of wild-type and S361A cecal fluid and combined unfiltered data from all ABPP-MudPIT analyses of wild-type cecal fluid. (XLSX 92 kb)

Supplementary Data Set 2

FP-biotin–enriched proteins from human choleric stool supernatant and unfiltered data from ABPP-MudPIT analysis of human choleric stool supernatant. (XLSX 28 kb)

Supplementary Data Set 3

ABPP-MudPIT analysis of wild-type and ΔivaP biofilm culture supernatants. (XLSX 23 kb)

Supplementary Data Set 4

ABPP-MudPIT analysis of exponential- and stationary-phase V. cholerae cell lysates. (XLSX 40 kb)

Supplementary Data Set 5

Comparative total and free fatty acid analysis of wild-type and Δquad cecal fluid. (XLSX 21 kb)

Supplementary Data Set 6

V. cholerae and rabbit proteins detected in unfractionated wild-type and Δquad cecal fluid. (XLSX 188 kb)

Supplementary Data Set 7

V. cholerae and human proteins detected in unfractionated human choleric stool. (XLSX 52 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatzios, S., Abel, S., Martell, J. et al. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 12, 268–274 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing