Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteomic analysis of the host–pathogen interface in experimental cholera

Abstract

The microbial cell surface is a site of critical microbe–host interactions that often control infection outcomes. Defining the set of host proteins present at this interface has been challenging. Here we used a surface-biotinylation approach coupled to quantitative mass spectrometry to identify and quantify both bacterial and host proteins present on the surface of diarrheal fluid-derived Vibrio cholerae in an infant rabbit model of cholera. The V. cholerae surface was coated with numerous host proteins, whose abundance were driven by the presence of cholera toxin, including the C-type lectin SP-D. Mice lacking SP-D had enhanced V. cholerae intestinal colonization, and SP-D production shaped both host and pathogen transcriptomes. Additional host proteins (AnxA1, LPO and ZAG) that bound V. cholerae were also found to recognize distinct taxa of the murine intestinal microbiota, suggesting that these host factors may play roles in intestinal homeostasis in addition to host defense.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The diarrheal fluid proteome in infant rabbits is largely stimulated by CT.
Fig. 2: Identification of surface-exposed V. cholerae proteins and V. cholerae-bound host-derived proteins.
Fig. 3: SP-D associates with V. cholerae cells in diarrheal fluid and in vitro.
Fig. 4: SP-D is an intestinal mucosal defense factor.
Fig. 5: LPO, AnxA1 and ZAG interact with V. cholerae.
Fig. 6: HBBPs interact with gut commensal bacteria.

Similar content being viewed by others

Data availability

All data, reagents and strains presented in this study are reported in the paper and associated Supplementary Information. Proteomic datasets were deposited to the ProteomeXchange Consortium via PRIDE (Data set identifier PXD027076 and 10.6019/PXD027076). RNA-seq datasets were deposited to the NCBI GEO repository (data set identifier GSE179530). Source data are provided with this paper.

References

  1. Ting, L., Rad, R., Gygi, S. P. & Haas, W. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat. Methods 8, 937–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weekes, M. P. et al. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 157, 1460–1472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Toledo, A. G. et al. Proteomic atlas of organ vasculopathies triggered by Staphylococcus aureus sepsis. Nat. Commun. 10, 4656 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Olson, M. G. et al. Proximity labeling to map host-pathogen interactions at the membrane of a bacterium-containing vacuole in chlamydia trachomatis-infected human cells. Infect. Immun. 87, e00537–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dizon, J. J. et al. Studies on cholera carriers. Bull. World Health Organ. 37, 737–743 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Levine, M. M., Kaper, J. B., Black, R. E. & Clements, M. L. New knowledge on pathogenesis of bacterial enteric infections as applied to vaccine development. Microbiol. Rev. 47, 510–550 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clemens, J. D., Nair, G. B., Ahmed, T., Qadri, F. & Holmgren, J. Cholera. Lancet 390, 1539–1549 (2017).

    Article  PubMed  Google Scholar 

  8. Wernick, N. L. B., Chinnapen, D. J. F., Cho, J. A. & Lencer, W. I. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins 2, 310–325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De, S. N. Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 183, 1533–1534 (1959).

    Article  CAS  PubMed  Google Scholar 

  10. Richardson, S. H. in Vibrio cholerae and Cholera 203–226 (ASM Press, 2014). https://doi.org/10.1128/9781555818364.ch14

  11. Ritchie, J. M., Rui, H., Bronson, R. T. & Waldor, M. K. Back to the future: studying cholera pathogenesis using infant rabbits. MBio 1, e00047–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Herrington, D. A. et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168, 1487–1492 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Mandlik, A. et al. RNA-seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10, 165–174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu, Y., Waldor, M. K. & Mekalanos, J. J. Tn-seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14, 652–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pritchard, J. R. et al. ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing. PLoS Genet. 10, e1004782 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kamp, H. D., Patimalla-Dipali, B., Lazinski, D. W., Wallace-Gadsden, F. & Camilli, A. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog. 9, e1003800 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. LaRocque, R. C. et al. Proteomic analysis of Vibrio cholerae in human stool. Infect. Immun. 76, 4145–4151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Altindis, E., Fu, Y. & Mekalanos, J. J. Proteomic analysis of Vibrio cholerae outer membrane vesicles. Proc. Natl Acad. Sci. USA 111, E1548–E1556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hatzios, S. K. et al. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat. Chem. Biol. 12, 268–274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chin, C.-S. et al. The origin of the haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Rivera-Chávez, F. & Mekalanos, J. J. Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature 572, 244–248 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Olivier, V., Queen, J. & Satchell, K. J. F. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS ONE 4, e7352 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. RS, N. & AS, F. Adjuvant effect of cholera enterotoxin on the immune response of the mouse to sheep red blood cells. J. Infect. Dis. 125, 627–673 (1972).

    Google Scholar 

  24. Weekes, M. P. et al. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6. J. Proteome Res. 11, 1475–1484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ryback, J. N. et al. In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat. Methods 2, 291–298 (2005).

    Article  CAS  Google Scholar 

  26. Pressler, K. et al. Characterization of Vibrio cholerae’s extracellular nuclease XDS. Front. Microbiol. 10, 2057 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Edwin, A. et al. Structure of the N-terminal domain of the metalloprotease PrtV from Vibrio cholerae. Protein Sci. 24, 2076–2080 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mey, A. R. & Payne, S. M. Haem utilization in Vibrio cholerae involves multiple tonB-dependent haem receptors. Mol. Microbiol. 42, 835–849 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Hughes, K. J., Everiss, K. D., Kovach, M. E. & Peterson, K. M. Isolation and characterization of the Vibrio cholerae acfA gene, required for efficient intestinal colonization. Gene 156, 59–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Sarashina-Kida, H. et al. Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis. Proc. Natl Acad. Sci. USA 114, 10178–10183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crouch, E. C. et al. Species differences in the carbohydrate binding preferences of surfactant protein D. Am. J. Respir. Cell Mol. Biol. 35, 84–94 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vuk-Pavlovic, Z., Standing, J. E., Crouch, E. C. & Limper, A. H. Carbohydrate recognition domain of surfactant protein D mediates interactions with Pneumocystis carinii glycoprotein A. Am. J. Respir. Cell Mol. Biol. 24, 475–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Reinhardt, A. et al. Structure binding relationship of human surfactant protein D and various lipopolysaccharide inner core structures. J. Struct. Biol. 195, 387–395 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Jounblat, R. et al. Binding and agglutination of Streptococcus pneumoniae by human surfactant protein D (SP-D) vary between strains, but SP-D fails to enhance killing by neutrophils. Infect. Immun. 72, 709–716 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gavins, F. N. E. & Hickey, M. J. Annexin A1 and the regulation of innate and adaptive immunity. Front. Immunol. 3, 354 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sheikh, M. H. & Solito, E. Annexin A1: uncovering the many talents of an old protein. Int. J. Mol. Sci. 19, 1045 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  37. Sarr, D., Tóth, E., Gingerich, A. & Rada, B. Antimicrobial actions of dual oxidases and lactoperoxidase. J. Microbiol. 56, 373–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al-Shehri, S. S., Duley, J. A. & Bansal, N. Xanthine oxidase-lactoperoxidase system and innate immunity: biochemical actions and physiological roles. Redox Biol. 34, 101524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arur, S. et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell 4, 587–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Sánchez, L. M. Crystal structure of human ZAG, a fat-depleting factor related to MHC molecules. Science 283, 1914–1919 (1999).

    Article  PubMed  Google Scholar 

  41. Halenius, A., Gerke, C. & Hengel, H. Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets-but how many arrows in the quiver? Cell. Mol. Immunol. 12, 139–153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stowell, S. R. et al. Microbial glycan microarrays define key features of host-microbial interactions. Nat. Chem. Biol. 10, 470–476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sohlenkamp, C. & Geiger, O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev. 40, 133–159 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lencer, W. I., Reinhart, F. D. & Neutra, M. R. Interaction of cholera toxin with cloned human goblet cells in monolayer culture. Am J. Physiol. Gastro. Liver Physiol. 258, https://doi.org/10.1152/ajpgi.1990.258.1.G96 (1990).

  46. Hartshorn, K. L. et al. Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses. J. Clin. Invest. 94, 311–319 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Madan, T. & Kishore, U. Surfactant protein d recognizes multiple fungal ligands: a key step to initiate and intensify the anti-fungal host defense. Front. Cell. Infect. Microbiol. 10, 229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sasabe, J. et al. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat. Microbiol. 1, 16125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hang, L. et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl Acad. Sci. USA 100, 8508–8513 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wesener, D. A. et al. Recognition of microbial glycans by human intelectin-1. Nat. Struct. Mol. Biol. 22, 603–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fleurie, A. et al. A Vibrio cholerae BoLA-like protein is required for proper cell shape and cell envelope integrity. Mol. Bio. 10, e00790–19 (2019).

    CAS  Google Scholar 

  52. Kuehl, C. J., D’gama, J. D., Warr, A. R. & Waldor, M. K. An oral inoculation infant rabbit model for shigella infection. Mol. Bio. 11, e03105–e03119 (2020).

    CAS  Google Scholar 

  53. Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Warr, A. R., Kuehl, C. J. & Waldor, M. K. Shiga toxin remodels the intestinal epithelial transcriptional response to enterohemorrhagic Escherichia coli. PLoS Pathog. 17, e1009290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Korotkevich, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2016).

  56. Voss, B. J. & Cover, T. L. Biotinylation and Purification of Surface-exposed Helicobacter pylori Proteins. Bio-protocol 5, 8 (2015).

    Article  Google Scholar 

  57. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 8, e67019 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Waldor laboratory for helpful discussions, M. Chao for insightful comments on the manuscript, R. Rodrigues, A. Warr and Y. Hasegawa for expert help with proteomics and bioinformatics and the Bettencourt-Schueller foundation for support. Glycomic experiments were done with the participation of the Protein-Glycan Interaction Resource of the Center for Functional Glycomics, and the National Center for Functional Glycomics, supporting grant nos. P41 GM103694 and R24 GM137763. Work in M.K.W. laboratory is supported by HHMI and National Insitutes of Health grant no. R01 AI-042347. T.Z. was supported by a Sarah Elizabeth O’Brien Trust Postdoctoral Fellowship. A.Z. was supported by an EMBO long-term fellowship (ALTF 1514-2016) and by a HHMI Fellowship of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.Z. and M.K.W. conceived and designed the study. A.Z., H.Z., T.Z., B.F. and C.J.K, performed all experiments. A.Z. and R.T.G. analyzed data. A.Z., B.S. and M.K.W. wrote the manuscript and all authors edited the paper.

Corresponding author

Correspondence to Matthew K. Waldor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Xiaoyun Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Diarrheal fluid volume and composition.

(a) Schematic of the experimental protocol for identification of the proteome in diarrheal fluid isolated from rabbits inoculated with V. cholerae, V. cholerae Δctx, purified cholera toxin (CT) or buffer alone (Mock). (b) Bacterial burdens recovered from diarrheal fluid harvested from rabbits infected with V. cholerae and V. cholerae Δctx. Data are mean for 3 independent animals per group. (c) Diarrheal fluid volumes collected from rabbits infected with V. cholerae, V. cholerae Δctx, purified cholera toxin (CT) and buffer (Mock). Data are mean for 3 independent animals for V. cholerae, V. cholerae Δctx and mock, and 4 independent animals for CT-infected animals. (d) Predicted localization of rabbit proteins identified in diarrheal fluid. Bioinformatic analysis was performed using the G:Profiler (http://biit.cs.ut.ee/gprofiler/) webtool. (e) Scatterplot of relative fold changes in protein abundances isolated from rabbit infected with V. cholerae Δctx (Delta) compared to wild-type V. cholerae (Vc), each relative to the proteomes of mock infected animals. The red dot indicates SP-D.

Extended Data Fig. 2 Validation of the surface biotinylation assay.

(a) Controls validating the surface-biotinylation screen. (a) Proteins isolated following surface-biotinylation protocol with (+) or without (-) the biotinylation step were separated by 10% acrylamide SDS–PAGE and silver-stained. (b) Presence of cytoplasmic RNA polymerase β and (c) outer-membrane OmpU were assessed by immunostaining with anti-RNApol and anti-OmpU antibodies, respectively. T: total V. cholerae lysate. Western blot analyses were performed at least three times with consistent results. (d) Venn diagram showing the comparison of V. cholerae proteins identified with our surface-biotinylation screen and V. cholerae outer membrane vesicles (OMV’s) proteomes from (34); 181 and 110 are the total number of proteins from each group.

Source data

Extended Data Fig. 3 SP-D associates with V. cholerae cells.

(a,b) Immunofluorescence micrographs of rabbit small intestines inoculated with V. cholerae-GFP. Bacterial cells were detected by GFP fluorescence, SP-D was detected with a goat anti-SP-D antibody followed by anti-goat antibody coupled to Alexa fluor 468. Phalloidin (for actin labeling) is stained with an antibody coupled to Alexa fluor 647 and DAPI (for DNA labeling) is shown is blue. (b) Only anti-goat antibody coupled to Alexa fluor 468 was used to assess non-specific staining of the second antibody. Scale bar is 100 μm. (c) V. cholerae cells were incubated in PBS containing 5 mM CaCl2 for 1 hour at 37 °C in the presence of SP-D (10 μg/ml), SP-D ΔC-ter (10 μg/ml) or a denatured SP-D and then incubated with fluorescent nucleic acid stains SYTO 9 and Propidium Iodide to assess viability. Data are mean ± s.d for three biological replicates. (d) Wide field of micrographs shown in Fig. 3e are represented by the dotted white square. Additional fields are also shown in rows #2 and #3. Scale bar is 10 μm. (e) Degradation of SP-D over time upon incubation with V. cholerae C6706 or the protease deficient strain V. cholerae C6706 Δquad. Graph shows SP-D protein band intensity normalized to RNApolβ over time. Western blot analyses were performed at least three times with consistent results.

Source data

Extended Data Fig. 4 Transcriptomic analysis.

(a) mRNA levels of the SFTPD gene measured by qRT-PCR and normalized to GAPDH mRNA levels in arbritrary unit (A.U) in mice infected with V. cholerae, V. cholerae Δctx or mock. Data are shown as mean ± s.d. (n = 4 technical replicates). (b) V. cholerae Δctx small intestinal colonization in littermate sftpd-/- and sftpd +/+ mice. Bacterial burdens recovered from proximal and distal small intestine 18 hrs after V. cholerae Δctx inoculation. Data are mean for 12 and 7 independent SP-D+ and SP-D- animals respectively. Note S-PD + include both heterozygotes (sftpd +/−) and homozygous (sftpd +/+) animals. Statistical significance was determined using a Mann-Whitney U t test. (c) Principal Component Analysis (PCA) plot of RNA-seq data from four biological replicates of WT or sftpd-/- mice proximal small intestine infected with V. cholerae. (d) Principal Component Analysis (PCA) plot of RNA-seq data from four biological replicates of WT or sftpd-/- mice distal small intestine infected with V. cholerae. (e) Heat map of rlog-transformed read counts for 4 animal replicates (WT or sftpd-/- infected with V. cholerae) for top 30 and bottom 30 genes by rank.

Extended Data Fig. 5 LPO, AnxA1 and ZAG binding to microbial glycans.

(a-c) Results of ZAG (a), LPO (b) and AnxA1 (c) binding to Microbial Glycan Microarray organized by genus and species (red is 5 and blue is 50 μg ml−1). Data are presented as the mean ± s.d. (n = 4 of a technical replicate for each immobilized glycan). Note: scales on Y axes are different. The complete datasets are available in Supplementary Data Set 4. (d) AnxA1-lipid interaction assessed by protein-lipid overlay assays. Graph shows quantification of the Annexin A1 protein band intensity normalized to the intensity of a blank spot band. Lysophosphatidic acid (LPA), Lysophosphocholine (LPC), Phosphatidylinositol (PtdIns), Phosphatidylinositol(3)-phosphate (PtdIns(3)P), Phosphatidylinositol (4)-phosphate (PtdIns(4)P), Phosphatidylinositol (5)-phosphate (PtdIns(5)P), Phosphatidylethanolamine (PE), Phosphatidylcholine (PC), Sphingosine-1-Phosphate (S1P), Phosphatidylinositol(3,4)-bisphosphate (PtdIns(3,4)P2), Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2), Phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P2), Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), Phosphatidic acid (PA), Phosphatidylserine (PS).

Extended Data Fig. 6 Microbiota-bound 16S analysis.

(a) Representative gating strategy illustrating bacterial populations coated with HBBP. (b) Principle component analyzes based on the Bray Curtis β-diversity metric showing that samples of AnxA1, LPO and ZAG positive populations each form separate clusters whereas all the HBBP negative populations cluster together. (c) Alpha rarefaction plot. Shown are the number of different observed features as a function of the number of sequences analyzed and generated with QIIME2. (d) Relative abundance differences between bound and unbound fractions of the gut symbionts, taxa with significant p values are shown as red circles (two-sided Welch’s t statistical as implemented in aldex2). clr: center log-ratio; f: family; g: genus.

Supplementary information

Reporting Summary

Supplementary Table 1

Complete intestinal fluid proteomes.

Supplementary Table 2

Complete pathway analysis.

Supplementary Table 3

Full proteomic datasets.

Supplementary Table 4

Transcriptomic analysis.

Supplementary Table 5

Full glycomic analysis.

Supplementary Table 6

List of strains.

Supplementary Table 7

List of primers.

Supplementary Table 8

List of antibodies.

Source data

Source Data Fig. 3

Unprocessed western blot.

Source Data Fig. 5

Unprocessed western blot.

Source Data Extended Data Fig. 2

Unprocessed western blot.

Source Data Extended Data Fig. 3

Unprocessed western blot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoued, A., Zhang, H., Zhang, T. et al. Proteomic analysis of the host–pathogen interface in experimental cholera. Nat Chem Biol 17, 1199–1208 (2021). https://doi.org/10.1038/s41589-021-00894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00894-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research